Cargando…

Inhibition of inflammatory factor TNF-α by ferrostatin-1 in microglia regulates necroptosis of oligodendrocyte precursor cells

Inflammation of the surrounding environment is a major reason causing loss or injury of oligodendrocyte precursor cells (OPCs) in myelin-associated diseases. Lipopolysaccharide-activated microglia can release various inflammatory factors such as tumor necrosis factor-α (TNF-α). One of the ways of OP...

Descripción completa

Detalles Bibliográficos
Autores principales: Chai, Zhi, Ma, Teng, Li, Yunhong, Chen, Qiuyuan, Kang, Yali, Sun, Jinping, Peng, Tao, Wang, Nina, Yu, Chengjun, Wang, Lijuan, Hou, Xiaolin, Wang, Wei, Wang, Yin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10309108/
https://www.ncbi.nlm.nih.gov/pubmed/37384932
http://dx.doi.org/10.1097/WNR.0000000000001928
Descripción
Sumario:Inflammation of the surrounding environment is a major reason causing loss or injury of oligodendrocyte precursor cells (OPCs) in myelin-associated diseases. Lipopolysaccharide-activated microglia can release various inflammatory factors such as tumor necrosis factor-α (TNF-α). One of the ways of OPC death is necroptosis, which can be triggered by TNF-α, a death receptor ligand, by activating receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL) signaling pathway. This study investigated whether inhibiting microglia ferroptosis can decrease TNF-α release to alleviate OPC necroptosis. METHODS: Lipopolysaccharide and Fer-1 stimulate BV2 cells. The expressions of GPX4 and TNF-α were detected by western blot and quantitative real-time PCR; malondialdehyde, glutathione, iron, and reactive oxygen species were measured by the assay kits. After lipopolysaccharide stimulation of BV2 cells, the supernatant was taken to culture OPC. The protein expression levels of RIPK1, p-RIPK1, RIPK3, p-RIPK3, MLKL, and p-MLKL were detected by western blot. RESULTS: Lipopolysaccharide administration could induce ferroptosis in microglia by decreasing ferroptosis marker GPX4, while ferroptosis inhibitor Fer-1 could significantly increase GPX4 level. Fer-1 prevented oxidative stress and iron concentration elevation and alleviated mitochondrial damage in lipopolysaccharide-induced BV2 cells. The results revealed that Fer-1 downregulated the release of lipopolysaccharide-induced TNF-α in microglia and attenuated OPC necroptosis by significantly decreasing the expression levels of RIPK1, p-RIPK1, MLKL, p-MLKL, RIPK3, and p-RIPK3. CONCLUSION: Fer-1 may be a potential agent for inhibiting inflammation and treating myelin-related diseases.