Cargando…

Local motion signals silence the perceptual solution of global apparent motion

Stimuli for apparent motion can have ambiguity in frame-to-frame correspondences among visual elements. This occurs when visual inputs cause a correspondence problem that allows multiple alternatives of perceptual solutions. Herein we examined the influence of local visual motions on a perceptual so...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakada, Hoko, Murakami, Ikuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10309164/
https://www.ncbi.nlm.nih.gov/pubmed/37378990
http://dx.doi.org/10.1167/jov.23.6.12
Descripción
Sumario:Stimuli for apparent motion can have ambiguity in frame-to-frame correspondences among visual elements. This occurs when visual inputs cause a correspondence problem that allows multiple alternatives of perceptual solutions. Herein we examined the influence of local visual motions on a perceptual solution under such a multistable situation. We repeatedly alternated two frames of stimuli in a circular configuration in which discrete elements in two different colors alternated in space and switched their colors frame by frame. These stimuli were compatible with three perceptual solutions: globally consistent clockwise and counterclockwise rotations and color flickers at the same locations without such global apparent motion. We added a sinusoidal grating continuously drifting within each element to examine whether the perceptual solution for the global apparent motion was affected by the local continuous motions. We found that the local motions suppressed global apparent motion and promoted another perceptual solution that the local elements were only flickering between the two colors and drifting within static windows. It was concluded that local continuous motions as counterevidence against global apparent motion contributed to individuating visual objects and integrating visual features for maintaining object identity at the same location