Cargando…
Using deep LSD to build operators in GANs latent space with meaning in real space
Generative models rely on the idea that data can be represented in terms of latent variables which are uncorrelated by definition. Lack of correlation among the latent variable support is important because it suggests that the latent-space manifold is simpler to understand and manipulate than the re...
Autores principales: | Toledo-Marín, J. Quetzalcóatl, Glazier, James A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10309997/ https://www.ncbi.nlm.nih.gov/pubmed/37384721 http://dx.doi.org/10.1371/journal.pone.0287736 |
Ejemplares similares
-
Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations
por: Toledo-Marín, J. Quetzalcóatl, et al.
Publicado: (2021) -
Disentangling the latent space of GANs for semantic face editing
por: Niu, Yongjie, et al.
Publicado: (2023) -
Means of Hilbert space operators
por: Hiai, Fumio, et al.
Publicado: (2003) -
Predicting microbiomes through a deep latent space
por: García-Jiménez, Beatriz, et al.
Publicado: (2020) -
Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space
por: Dado, Thirza, et al.
Publicado: (2022)