Cargando…
Model discovery to link neural activity to behavioral tasks
Brains are not engineered solutions to a well-defined problem but arose through selective pressure acting on random variation. It is therefore unclear how well a model chosen by an experimenter can relate neural activity to experimental conditions. Here, we developed ‘model identification of neural...
Autores principales: | Costabile, Jamie D, Balakrishnan, Kaarthik A, Schwinn, Sina, Haesemeyer, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310322/ https://www.ncbi.nlm.nih.gov/pubmed/37278516 http://dx.doi.org/10.7554/eLife.83289 |
Ejemplares similares
-
Stable task information from an unstable neural population
por: Rule, Michael E, et al.
Publicado: (2020) -
Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks
por: Miconi, Thomas
Publicado: (2017) -
Training deep neural density estimators to identify mechanistic models of neural dynamics
por: Gonçalves, Pedro J, et al.
Publicado: (2020) -
Action detection using a neural network elucidates the genetics of mouse grooming behavior
por: Geuther, Brian Q, et al.
Publicado: (2021) -
Multivariate stochastic volatility modeling of neural data
por: Phan, Tung D, et al.
Publicado: (2019)