Cargando…

Activated volcanism of Mount Fuji by the 2011 Japanese large earthquakes

The relation between earthquakes and volcanic eruptions, each of which is manifested by large-scale tectonic plate and mantle motions, has been widely discussed. Mount Fuji, in Japan, last erupted in 1707, paired with a magnitude (M)-9-class earthquake 49 days prior. Motivated by this pairing, previ...

Descripción completa

Detalles Bibliográficos
Autores principales: Nanjo, K. Z., Yukutake, Y., Kumazawa, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310753/
https://www.ncbi.nlm.nih.gov/pubmed/37386094
http://dx.doi.org/10.1038/s41598-023-37735-4
Descripción
Sumario:The relation between earthquakes and volcanic eruptions, each of which is manifested by large-scale tectonic plate and mantle motions, has been widely discussed. Mount Fuji, in Japan, last erupted in 1707, paired with a magnitude (M)-9-class earthquake 49 days prior. Motivated by this pairing, previous studies investigated its effect on Mount Fuji after both the 2011 M9 Tohoku megaquake and a triggered M5.9 Shizuoka earthquake 4 days later at the foot of the volcano, but reported no potential to erupt. More than 300 years have already passed since the 1707 eruption, and even though consequences to society caused by the next eruption are already being considered, the implications for future volcanism remain uncertain. This study shows how volcanic low-frequency earthquakes (LFEs) in the deep part of the volcano revealed unrecognized activation after the Shizuoka earthquake. Our analyses also show that despite an increase in the rate of occurrence of LFEs, these did not return to pre-earthquake levels, indicating a change in the magma system. Our results demonstrate that the volcanism of Mount Fuji was reactivated by the Shizuoka earthquake, implying that this volcano is sufficiently sensitive to external events that are considered to be enough to trigger eruptions.