Cargando…

Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial

BACKGROUND: Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex and cerebellum is gaining prominence in the literature due to its potential to favor learning and motor performance. If administered during motor training, tDCS is capable of increasing the effect of trai...

Descripción completa

Detalles Bibliográficos
Autores principales: Araujo, Marcela O., Tamplain, Priscila, Duarte, Natália A. C., Comodo, Andréa C. M., Ferreira, Giselle O. A., Queiróga, Amanda, Oliveira, Claudia S., Collange-Grecco, Luanda A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310925/
https://www.ncbi.nlm.nih.gov/pubmed/37396775
http://dx.doi.org/10.3389/fneur.2023.1196585
_version_ 1785066636303138816
author Araujo, Marcela O.
Tamplain, Priscila
Duarte, Natália A. C.
Comodo, Andréa C. M.
Ferreira, Giselle O. A.
Queiróga, Amanda
Oliveira, Claudia S.
Collange-Grecco, Luanda A.
author_facet Araujo, Marcela O.
Tamplain, Priscila
Duarte, Natália A. C.
Comodo, Andréa C. M.
Ferreira, Giselle O. A.
Queiróga, Amanda
Oliveira, Claudia S.
Collange-Grecco, Luanda A.
author_sort Araujo, Marcela O.
collection PubMed
description BACKGROUND: Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex and cerebellum is gaining prominence in the literature due to its potential to favor learning and motor performance. If administered during motor training, tDCS is capable of increasing the effect of training. Considering the motor impairment presented by children with Autism Spectrum Disorders (ASD), atDCS applied during motor training may contribute to the rehabilitation of these children. However, it is necessary to examine and compare the effects of atDCS over the motor cortex and the cerebellum on the motor skills of children with ASD. This information may benefit future clinical indications of tDCS for rehabilitation of children with ASD. The aim of the proposed study is to determine whether anodal tDCS over the primary motor cortex and cerebellum can enhance the effects of gait training and postural control on motor skills, mobility, functional balance, cortical excitability, cognitive aspects and behavioral aspects in children with ASD. Our hypothesis is the active tDCS combined with motor training will enhance the performance of the participants in comparison to sham tDCS. METHODS AND DESIGN: A randomized, sham-controlled, double-blind clinical trial will be conducted involving 30 children with ASD that will be recruited to receive ten sessions of sham or ten sessions of active anodal tDCS (1 mA, 20 min) over the primary motor cortex or cerebellun combined with motor training. The participants will be assessed before as well as one, four and eight weeks after the interventions. The primary outcome will be gross and fine motor skills. The secondary outcomes will be mobility, functional balance, motor cortical excitability, cognitive aspects and behavioral aspects. DISCUSSION: Although abnormalities in gait and balance are not primary characteristics of ASD, such abnormalities compromise independence and global functioning during the execution of routine activities of childhood. If demonstrated that anodal tDCS administered over areas of the brain involved in motor control, such as the primary motor cortex and cerebellum, can enhance the effects of gait and balance training in only ten sessions in two consecutive weeks, the clinical applicability of this stimulation modality will be expanded as well as more scientifically founded. Clinical trial registration February 16, 2023 (https://ensaiosclinicos.gov.br/rg/RBR-3bskhwf).
format Online
Article
Text
id pubmed-10310925
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-103109252023-07-01 Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial Araujo, Marcela O. Tamplain, Priscila Duarte, Natália A. C. Comodo, Andréa C. M. Ferreira, Giselle O. A. Queiróga, Amanda Oliveira, Claudia S. Collange-Grecco, Luanda A. Front Neurol Neurology BACKGROUND: Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex and cerebellum is gaining prominence in the literature due to its potential to favor learning and motor performance. If administered during motor training, tDCS is capable of increasing the effect of training. Considering the motor impairment presented by children with Autism Spectrum Disorders (ASD), atDCS applied during motor training may contribute to the rehabilitation of these children. However, it is necessary to examine and compare the effects of atDCS over the motor cortex and the cerebellum on the motor skills of children with ASD. This information may benefit future clinical indications of tDCS for rehabilitation of children with ASD. The aim of the proposed study is to determine whether anodal tDCS over the primary motor cortex and cerebellum can enhance the effects of gait training and postural control on motor skills, mobility, functional balance, cortical excitability, cognitive aspects and behavioral aspects in children with ASD. Our hypothesis is the active tDCS combined with motor training will enhance the performance of the participants in comparison to sham tDCS. METHODS AND DESIGN: A randomized, sham-controlled, double-blind clinical trial will be conducted involving 30 children with ASD that will be recruited to receive ten sessions of sham or ten sessions of active anodal tDCS (1 mA, 20 min) over the primary motor cortex or cerebellun combined with motor training. The participants will be assessed before as well as one, four and eight weeks after the interventions. The primary outcome will be gross and fine motor skills. The secondary outcomes will be mobility, functional balance, motor cortical excitability, cognitive aspects and behavioral aspects. DISCUSSION: Although abnormalities in gait and balance are not primary characteristics of ASD, such abnormalities compromise independence and global functioning during the execution of routine activities of childhood. If demonstrated that anodal tDCS administered over areas of the brain involved in motor control, such as the primary motor cortex and cerebellum, can enhance the effects of gait and balance training in only ten sessions in two consecutive weeks, the clinical applicability of this stimulation modality will be expanded as well as more scientifically founded. Clinical trial registration February 16, 2023 (https://ensaiosclinicos.gov.br/rg/RBR-3bskhwf). Frontiers Media S.A. 2023-06-15 /pmc/articles/PMC10310925/ /pubmed/37396775 http://dx.doi.org/10.3389/fneur.2023.1196585 Text en Copyright © 2023 Araujo, Tamplain, Duarte, Comodo, Ferreira, Queiróga, Oliveira and Collange-Grecco. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neurology
Araujo, Marcela O.
Tamplain, Priscila
Duarte, Natália A. C.
Comodo, Andréa C. M.
Ferreira, Giselle O. A.
Queiróga, Amanda
Oliveira, Claudia S.
Collange-Grecco, Luanda A.
Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial
title Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial
title_full Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial
title_fullStr Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial
title_full_unstemmed Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial
title_short Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial
title_sort transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial
topic Neurology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310925/
https://www.ncbi.nlm.nih.gov/pubmed/37396775
http://dx.doi.org/10.3389/fneur.2023.1196585
work_keys_str_mv AT araujomarcelao transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial
AT tamplainpriscila transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial
AT duartenataliaac transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial
AT comodoandreacm transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial
AT ferreiragiselleoa transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial
AT queirogaamanda transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial
AT oliveiraclaudias transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial
AT collangegreccoluandaa transcranialdirectcurrentstimulationtofacilitateneurofunctionalrehabilitationinchildrenwithautismspectrumdisorderaprotocolforarandomizedshamcontrolleddoubleblindclinicaltrial