Cargando…
Toward reproducible models of sequence learning: replication and analysis of a modular spiking network with reward-based learning
To acquire statistical regularities from the world, the brain must reliably process, and learn from, spatio-temporally structured information. Although an increasing number of computational models have attempted to explain how such sequence learning may be implemented in the neural hardware, many re...
Autores principales: | Zajzon, Barna, Duarte, Renato, Morrison, Abigail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310927/ https://www.ncbi.nlm.nih.gov/pubmed/37396571 http://dx.doi.org/10.3389/fnint.2023.935177 |
Ejemplares similares
-
Passing the Message: Representation Transfer in Modular Balanced Networks
por: Zajzon, Barna, et al.
Publicado: (2019) -
Signal denoising through topographic modularity of neural circuits
por: Zajzon, Barna, et al.
Publicado: (2023) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
Reproducing Polychronization: A Guide to Maximizing the Reproducibility of Spiking Network Models
por: Pauli, Robin, et al.
Publicado: (2018) -
Temporal sequence learning via adaptation in biologically plausible spiking neural networks
por: Duarte, Renato, et al.
Publicado: (2014)