Cargando…
Development of a molecular feature-based survival prediction model of ovarian cancer using the deep neural network
Autores principales: | Lang, Tingyuan, Yang, Muyao, Xia, Yunqiu, Liu, Jingshu, Li, Yunzhe, Yang, Lingling, Cui, Chenxi, Hu, Yunran, Luo, Yang, Zou, Dongling, Zhou, Lei, Fu, Zhou, Zhou, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chongqing Medical University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311109/ https://www.ncbi.nlm.nih.gov/pubmed/37397532 http://dx.doi.org/10.1016/j.gendis.2022.10.011 |
Ejemplares similares
-
Machine learning-based prediction of survival prognosis in cervical cancer
por: Ding, Dongyan, et al.
Publicado: (2021) -
Zinc finger and SCAN domain containing 1, ZSCAN1, is a novel stemness-related tumor suppressor and transcriptional repressor in breast cancer targeting TAZ
por: Chu, Jian, et al.
Publicado: (2023) -
SOX4 maintains the stemness of cancer cells via transcriptionally enhancing HDAC1 revealed by comparative proteomics study
por: Liu, Jingshu, et al.
Publicado: (2021) -
Baicalin Attenuates YAP Activity to Suppress Ovarian Cancer Stemness
por: Li, Yucong, et al.
Publicado: (2020) -
Disruption of KDM4C-ALDH1A3 feed-forward loop inhibits stemness, tumorigenesis and chemoresistance of gastric cancer stem cells
por: Lang, Tingyuan, et al.
Publicado: (2021)