Cargando…
Comparing the segmentation of quantitative phase images of neurons using convolutional neural networks trained on simulated and augmented imagery
SIGNIFICANCE: Quantitative phase imaging (QPI) can visualize cellular morphology and measure dry mass. Automated segmentation of QPI imagery is desirable for tracking neuron growth. Convolutional neural networks (CNNs) have provided state-of-the-art results for image segmentation. Improving the amou...
Autores principales: | Gil, Eddie M., Steelman, Zachary A., Sedelnikova, Anna, Bixler, Joel N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311234/ https://www.ncbi.nlm.nih.gov/pubmed/37398700 http://dx.doi.org/10.1117/1.NPh.10.3.035004 |
Ejemplares similares
-
Comprehensive single-shot biophysical cytometry using simultaneous quantitative phase imaging and Brillouin spectroscopy
por: Steelman, Zachary A., et al.
Publicado: (2022) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery
por: Nemni, Edoardo, et al.
Publicado: (2020) -
Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation
Publicado: (2022) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sadanandan, Sajith Kecheril, et al.
Publicado: (2017)