Cargando…
CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties
MOTIVATION: Deep learning-based molecule generation becomes a new paradigm of de novo molecule design since it enables fast and directional exploration in the vast chemical space. However, it is still an open issue to generate molecules, which bind to specific proteins with high-binding affinities w...
Autores principales: | Li, Jia-Ning, Yang, Guang, Zhao, Peng-Cheng, Wei, Xue-Xin, Shi, Jian-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311289/ https://www.ncbi.nlm.nih.gov/pubmed/37387157 http://dx.doi.org/10.1093/bioinformatics/btad222 |
Ejemplares similares
-
Predicting MHC-peptide binding affinity by differential boundary tree
por: Feng, Peiyuan, et al.
Publicado: (2021) -
EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework
por: Hu, Yangyang, et al.
Publicado: (2021) -
The locality dilemma of Sankoff-like RNA alignments
por: Müller, Teresa, et al.
Publicado: (2020) -
Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
por: Yan, Zichao, et al.
Publicado: (2020) -
Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization
por: Krieger, Spencer, et al.
Publicado: (2020)