Cargando…
CellBRF: a feature selection method for single-cell clustering using cell balance and random forest
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) offers a powerful tool to dissect the complexity of biological tissues through cell sub-population identification in combination with clustering approaches. Feature selection is a critical step for improving the accuracy and interpretability of sing...
Autores principales: | Xu, Yunpei, Li, Hong-Dong, Lin, Cui-Xiang, Zheng, Ruiqing, Li, Yaohang, Xu, Jinhui, Wang, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311305/ https://www.ncbi.nlm.nih.gov/pubmed/37387178 http://dx.doi.org/10.1093/bioinformatics/btad216 |
Ejemplares similares
-
scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling
por: Song, Dongyuan, et al.
Publicado: (2021) -
scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
por: Burdziak, Cassandra, et al.
Publicado: (2023) -
Bayesian information sharing enhances detection of regulatory associations in rare cell types
por: Wu, Alexander P, et al.
Publicado: (2021) -
Cell type matching across species using protein embeddings and transfer learning
por: Biharie, Kirti, et al.
Publicado: (2023) -
Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution
por: Margalit, Sapir, et al.
Publicado: (2021)