Cargando…
SpatialSort: a Bayesian model for clustering and cell population annotation of spatial proteomics data
MOTIVATION: Recent advances in spatial proteomics technologies have enabled the profiling of dozens of proteins in thousands of single cells in situ. This has created the opportunity to move beyond quantifying the composition of cell types in tissue, and instead probe the spatial relationships betwe...
Autores principales: | Lee, Eric, Chern, Kevin, Nissen, Michael, Wang, Xuehai, Huang, Chris, Gandhi, Anita K, Bouchard-Côté, Alexandre, Weng, Andrew P, Roth, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311307/ https://www.ncbi.nlm.nih.gov/pubmed/37387130 http://dx.doi.org/10.1093/bioinformatics/btad242 |
Ejemplares similares
-
Deriving spatial features from in situ proteomics imaging to enhance cancer survival analysis
por: Dayao, Monica T, et al.
Publicado: (2023) -
CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data
por: Wei, Ziyang, et al.
Publicado: (2021) -
‘Single-subject studies’-derived analyses unveil altered biomechanisms between very small cohorts: implications for rare diseases
por: Aberasturi, Dillon, et al.
Publicado: (2021) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021)