Cargando…
DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response
MOTIVATION: The coronavirus disease 2019 (COVID-19) remains a global public health emergency. Although people, especially those with underlying health conditions, could benefit from several approved COVID-19 therapeutics, the development of effective antiviral COVID-19 drugs is still a very urgent p...
Autores principales: | Huang, Zhijian, Zhang, Pan, Deng, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311311/ https://www.ncbi.nlm.nih.gov/pubmed/37387168 http://dx.doi.org/10.1093/bioinformatics/btad244 |
Ejemplares similares
-
Graph transformation for enzymatic mechanisms
por: Andersen, Jakob L, et al.
Publicado: (2021) -
Fully interpretable deep learning model of transcriptional control
por: Liu, Yi, et al.
Publicado: (2020) -
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
por: Wang, Zichen, et al.
Publicado: (2020) -
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023) -
PEDL: extracting protein–protein associations using deep language models and distant supervision
por: Weber, Leon, et al.
Publicado: (2020)