Cargando…

AttOmics: attention-based architecture for diagnosis and prognosis from omics data

MOTIVATION: The increasing availability of high-throughput omics data allows for considering a new medicine centered on individual patients. Precision medicine relies on exploiting these high-throughput data with machine-learning models, especially the ones based on deep-learning approaches, to impr...

Descripción completa

Detalles Bibliográficos
Autores principales: Beaude, Aurélien, Rafiee Vahid, Milad, Augé, Franck, Zehraoui, Farida, Hanczar, Blaise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311315/
https://www.ncbi.nlm.nih.gov/pubmed/37387182
http://dx.doi.org/10.1093/bioinformatics/btad232
Descripción
Sumario:MOTIVATION: The increasing availability of high-throughput omics data allows for considering a new medicine centered on individual patients. Precision medicine relies on exploiting these high-throughput data with machine-learning models, especially the ones based on deep-learning approaches, to improve diagnosis. Due to the high-dimensional small-sample nature of omics data, current deep-learning models end up with many parameters and have to be fitted with a limited training set. Furthermore, interactions between molecular entities inside an omics profile are not patient specific but are the same for all patients. RESULTS: In this article, we propose AttOmics, a new deep-learning architecture based on the self-attention mechanism. First, we decompose each omics profile into a set of groups, where each group contains related features. Then, by applying the self-attention mechanism to the set of groups, we can capture the different interactions specific to a patient. The results of different experiments carried out in this article show that our model can accurately predict the phenotype of a patient with fewer parameters than deep neural networks. Visualizing the attention maps can provide new insights into the essential groups for a particular phenotype. AVAILABILITY AND IMPLEMENTATION: The code and data are available at https://forge.ibisc.univ-evry.fr/abeaude/AttOmics. TCGA data can be downloaded from the Genomic Data Commons Data Portal.