Cargando…
AttOmics: attention-based architecture for diagnosis and prognosis from omics data
MOTIVATION: The increasing availability of high-throughput omics data allows for considering a new medicine centered on individual patients. Precision medicine relies on exploiting these high-throughput data with machine-learning models, especially the ones based on deep-learning approaches, to impr...
Autores principales: | Beaude, Aurélien, Rafiee Vahid, Milad, Augé, Franck, Zehraoui, Farida, Hanczar, Blaise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311315/ https://www.ncbi.nlm.nih.gov/pubmed/37387182 http://dx.doi.org/10.1093/bioinformatics/btad232 |
Ejemplares similares
-
GAN-based data augmentation for transcriptomics: survey and comparative assessment
por: Lacan, Alice, et al.
Publicado: (2023) -
COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data
por: Ditz, Jonas C, et al.
Publicado: (2023) -
PPAD: a deep learning architecture to predict progression of Alzheimer’s disease
por: Al Olaimat, Mohammad, et al.
Publicado: (2023) -
‘Single-subject studies’-derived analyses unveil altered biomechanisms between very small cohorts: implications for rare diseases
por: Aberasturi, Dillon, et al.
Publicado: (2021) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021)