Cargando…
Optimal adjustment sets for causal query estimation in partially observed biomolecular networks
Causal query estimation in biomolecular networks commonly selects a ‘valid adjustment set’, i.e. a subset of network variables that eliminates the bias of the estimator. A same query may have multiple valid adjustment sets, each with a different variance. When networks are partially observed, curren...
Autores principales: | Mohammad-Taheri, Sara, Tewari, Vartika, Kapre, Rohan, Rahiminasab, Ehsan, Sachs, Karen, Tapley Hoyt, Charles, Zucker, Jeremy, Vitek, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311316/ https://www.ncbi.nlm.nih.gov/pubmed/37387179 http://dx.doi.org/10.1093/bioinformatics/btad270 |
Ejemplares similares
-
Do-calculus enables estimation of causal effects in partially observed biomolecular pathways
por: Mohammad-Taheri, Sara, et al.
Publicado: (2022) -
Correction to: Optimal adjustment sets for causal query estimation in partially observed biomolecular networks
Publicado: (2023) -
The Reconstruction of Causal Networks in Physiology
por: Günther, Moritz, et al.
Publicado: (2022) -
Information theoretic measures of causal influences during transient neural events
por: Shao, Kaidi, et al.
Publicado: (2023) -
Fully interpretable deep learning model of transcriptional control
por: Liu, Yi, et al.
Publicado: (2020)