Cargando…
An intrinsically interpretable neural network architecture for sequence-to-function learning
MOTIVATION: Sequence-based deep learning approaches have been shown to predict a multitude of functional genomic readouts, including regions of open chromatin and RNA expression of genes. However, a major limitation of current methods is that model interpretation relies on computationally demanding...
Autores principales: | Balcı, Ali Tuğrul, Ebeid, Mark Maher, Benos, Panayiotis V, Kostka, Dennis, Chikina, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311317/ https://www.ncbi.nlm.nih.gov/pubmed/37387140 http://dx.doi.org/10.1093/bioinformatics/btad271 |
Ejemplares similares
-
An intrinsically interpretable neural network architecture for sequence to function learning
por: Balcı, Ali Tuğrul, et al.
Publicado: (2023) -
Cell type matching across species using protein embeddings and transfer learning
por: Biharie, Kirti, et al.
Publicado: (2023) -
SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration
por: Cao, Yingxin, et al.
Publicado: (2021) -
CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes
por: Li, Victoria R, et al.
Publicado: (2021) -
DECODE: a Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays
por: Chen, Zhanlin, et al.
Publicado: (2021)