Cargando…

Deep statistical modelling of nanopore sequencing translocation times reveals latent non-B DNA structures

MOTIVATION: Non-canonical (or non-B) DNA are genomic regions whose three-dimensional conformation deviates from the canonical double helix. Non-B DNA play an important role in basic cellular processes and are associated with genomic instability, gene regulation, and oncogenesis. Experimental methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Hosseini, Marjan, Palmer, Aaron, Manka, William, Grady, Patrick G S, Patchigolla, Venkata, Bi, Jinbo, O’Neill, Rachel J, Chi, Zhiyi, Aguiar, Derek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311326/
https://www.ncbi.nlm.nih.gov/pubmed/37387144
http://dx.doi.org/10.1093/bioinformatics/btad220
Descripción
Sumario:MOTIVATION: Non-canonical (or non-B) DNA are genomic regions whose three-dimensional conformation deviates from the canonical double helix. Non-B DNA play an important role in basic cellular processes and are associated with genomic instability, gene regulation, and oncogenesis. Experimental methods are low-throughput and can detect only a limited set of non-B DNA structures, while computational methods rely on non-B DNA base motifs, which are necessary but not sufficient indicators of non-B structures. Oxford Nanopore sequencing is an efficient and low-cost platform, but it is currently unknown whether nanopore reads can be used for identifying non-B structures. RESULTS: We build the first computational pipeline to predict non-B DNA structures from nanopore sequencing. We formalize non-B detection as a novelty detection problem and develop the GoFAE-DND, an autoencoder that uses goodness-of-fit (GoF) tests as a regularizer. A discriminative loss encourages non-B DNA to be poorly reconstructed and optimizing Gaussian GoF tests allows for the computation of P-values that indicate non-B structures. Based on whole genome nanopore sequencing of NA12878, we show that there exist significant differences between the timing of DNA translocation for non-B DNA bases compared with B-DNA. We demonstrate the efficacy of our approach through comparisons with novelty detection methods using experimental data and data synthesized from a new translocation time simulator. Experimental validations suggest that reliable detection of non-B DNA from nanopore sequencing is achievable. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/bayesomicslab/ONT-nonb-GoFAE-DND.