Cargando…
SemiBin2: self-supervised contrastive learning leads to better MAGs for short- and long-read sequencing
MOTIVATION: Metagenomic binning methods to reconstruct metagenome-assembled genomes (MAGs) from environmental samples have been widely used in large-scale metagenomic studies. The recently proposed semi-supervised binning method, SemiBin, achieved state-of-the-art binning results in several environm...
Autores principales: | Pan, Shaojun, Zhao, Xing-Ming, Coelho, Luis Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311329/ https://www.ncbi.nlm.nih.gov/pubmed/37387171 http://dx.doi.org/10.1093/bioinformatics/btad209 |
Ejemplares similares
-
MetaBCC-LR: metagenomics binning by coverage and composition for long reads
por: Wickramarachchi, Anuradha, et al.
Publicado: (2020) -
IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data
por: Rahman, Mohammad Arifur, et al.
Publicado: (2020) -
Discovery of multi-operon colinear syntenic blocks in microbial genomes
por: Svetlitsky, Dina, et al.
Publicado: (2020) -
Topological and kernel-based microbial phenotype prediction from MALDI-TOF mass spectra
por: Weis, Caroline, et al.
Publicado: (2020) -
ganon: precise metagenomics classification against large and up-to-date sets of reference sequences
por: Piro, Vitor C, et al.
Publicado: (2020)