Cargando…
GAN-based data augmentation for transcriptomics: survey and comparative assessment
MOTIVATION: Transcriptomics data are becoming more accessible due to high-throughput and less costly sequencing methods. However, data scarcity prevents exploiting deep learning models’ full predictive power for phenotypes prediction. Artificially enhancing the training sets, namely data augmentatio...
Autores principales: | Lacan, Alice, Sebag, Michèle, Hanczar, Blaise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311334/ https://www.ncbi.nlm.nih.gov/pubmed/37387181 http://dx.doi.org/10.1093/bioinformatics/btad239 |
Ejemplares similares
-
AttOmics: attention-based architecture for diagnosis and prognosis from omics data
por: Beaude, Aurélien, et al.
Publicado: (2023) -
OncoThreads: visualization of large-scale longitudinal cancer molecular data
por: Harbig, Theresa A, et al.
Publicado: (2021) -
COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data
por: Ditz, Jonas C, et al.
Publicado: (2023) -
SpatialSort: a Bayesian model for clustering and cell population annotation of spatial proteomics data
por: Lee, Eric, et al.
Publicado: (2023) -
CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data
por: Wei, Ziyang, et al.
Publicado: (2021)