Cargando…
Denoising Autoencoder Trained on Simulation-Derived Structures for Noise Reduction in Chromatin Scanning Transmission Electron Microscopy
[Image: see text] Scanning transmission electron microscopy tomography with ChromEM staining (ChromSTEM), has allowed for the three-dimensional study of genome organization. By leveraging convolutional neural networks and molecular dynamics simulations, we have developed a denoising autoencoder (DAE...
Autores principales: | Alvarado, Walter, Agrawal, Vasundhara, Li, Wing Shun, Dravid, Vinayak P., Backman, Vadim, de Pablo, Juan J., Ferguson, Andrew L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311656/ https://www.ncbi.nlm.nih.gov/pubmed/37396862 http://dx.doi.org/10.1021/acscentsci.3c00178 |
Ejemplares similares
-
Analysis of three-dimensional chromatin packing domains by chromatin scanning transmission electron microscopy (ChromSTEM)
por: Li, Yue, et al.
Publicado: (2022) -
Author Correction: Analysis of three-dimensional chromatin packing domains by chromatin scanning transmission electron microscopy (ChromSTEM)
por: Li, Yue, et al.
Publicado: (2022) -
Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images
por: Wang, Feng, et al.
Publicado: (2020) -
Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
por: Miranda-González, Armando Adrián, et al.
Publicado: (2023) -
CDAE: A Cascade of Denoising Autoencoders for Noise Reduction in the Clustering of Single-Particle Cryo-EM Images
por: Lei, Houchao, et al.
Publicado: (2021)