Cargando…

Growth hormone reduces aneuploidy and improves oocytes quality by JAK2-MAPK3/1 pathway in aged mice

BACKGROUND: The global delay in women’s reproductive age has raised concerns about age-related infertility. The decline in oocyte quality is a limiting factor of female fertility, yet there are currently no strategies to preserve oocyte quality in aged women. Here, we investigated the effects of gro...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yun-Yao, Zeng, Xi, Zhu, Ling, Li, Chong, Xie, Juan, Dong, Qiang, Sun, Qing-Yuan, Huang, Guo-Ning, Li, Jing-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311773/
https://www.ncbi.nlm.nih.gov/pubmed/37386516
http://dx.doi.org/10.1186/s12967-023-04296-z
Descripción
Sumario:BACKGROUND: The global delay in women’s reproductive age has raised concerns about age-related infertility. The decline in oocyte quality is a limiting factor of female fertility, yet there are currently no strategies to preserve oocyte quality in aged women. Here, we investigated the effects of growth hormone (GH) supplementation on aneuploidy of aged oocytes. METHODS: For the in vivo experiments, the aged mice (8-month-old) were intraperitoneally injected with GH daily for 8 weeks. For the in vitro experiments, germinal vesicle oocytes from aged mice were treated with GH during oocyte maturation. The impacts of GH on ovarian reserve before superovulation was evaluated. Oocytes were retrieved to assess oocyte quality, aneuploidy and developmental potential characteristics. Quantitative proteomics analysis was applied to investigate the potential targets of GH in aged oocytes. RESULTS: In this study, we demonstrated that GH supplementation in vivo not only alleviated the decline in oocyte number caused by aging, but also improved the quality and developmental potential of aged oocytes. Strikingly, we discovered that GH supplementation reduced aneuploidy in aged oocytes. Mechanically, in addition to improving mitochondrial function, our proteomic analysis indicated that the MAPK3/1 pathway may be involved in the reduction in aneuploidy of aged oocytes, as confirmed both in vivo and in vitro. In addition, JAK2 may also act as a mediator in how GH regulates MAPK3/1. CONCLUSIONS: In conclusion, our research reveals that GH supplementation protects oocytes against aging-related aneuploidy and enhances the quality of aged oocytes, which has clinical significance for aged women undergoing assisted reproduction technology. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04296-z.