Cargando…
Comparing methods for drug–gene interaction prediction on the biomedical literature knowledge graph: performance versus explainability
This paper applies different link prediction methods on a knowledge graph generated from biomedical literature, with the aim to compare their ability to identify unknown drug-gene interactions and explain their predictions. Identifying novel drug–target interactions is a crucial step in drug discove...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311852/ https://www.ncbi.nlm.nih.gov/pubmed/37391722 http://dx.doi.org/10.1186/s12859-023-05373-2 |
Sumario: | This paper applies different link prediction methods on a knowledge graph generated from biomedical literature, with the aim to compare their ability to identify unknown drug-gene interactions and explain their predictions. Identifying novel drug–target interactions is a crucial step in drug discovery and repurposing. One approach to this problem is to predict missing links between drug and gene nodes, in a graph that contains relevant biomedical knowledge. Such a knowledge graph can be extracted from biomedical literature, using text mining tools. In this work, we compare state-of-the-art graph embedding approaches and contextual path analysis on the interaction prediction task. The comparison reveals a trade-off between predictive accuracy and explainability of predictions. Focusing on explainability, we train a decision tree on model predictions and show how it can aid the understanding of the prediction process. We further test the methods on a drug repurposing task and validate the predicted interactions against external databases, with very encouraging results. |
---|