Cargando…
Comparing methods for drug–gene interaction prediction on the biomedical literature knowledge graph: performance versus explainability
This paper applies different link prediction methods on a knowledge graph generated from biomedical literature, with the aim to compare their ability to identify unknown drug-gene interactions and explain their predictions. Identifying novel drug–target interactions is a crucial step in drug discove...
Autores principales: | Aisopos, Fotis, Paliouras, Georgios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311852/ https://www.ncbi.nlm.nih.gov/pubmed/37391722 http://dx.doi.org/10.1186/s12859-023-05373-2 |
Ejemplares similares
-
Knowledge4COVID-19: A semantic-based approach for constructing a COVID-19 related knowledge graph from various sources and analyzing treatments’ toxicities
por: Sakor, Ahmad, et al.
Publicado: (2023) -
Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical records
por: Vyas, Akhilesh, et al.
Publicado: (2022) -
Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications
por: Alshahrani, Mona, et al.
Publicado: (2022) -
KGen: a knowledge graph generator from biomedical scientific literature
por: Rossanez, Anderson, et al.
Publicado: (2020) -
Constructing knowledge graphs and their biomedical applications
por: Nicholson, David N., et al.
Publicado: (2020)