Cargando…

Efficient production of icariin and baohuoside I from Epimedium Folium flavonoids by fungal α-l-rhamnosidase hydrolysing regioselectively the terminal rhamnose of epimedin C

Industrial application of icariin and baohuoside I has been hindered by the short supply to a great extent. In this work, a novel GH78 α-l-rhamnosidase AmRha catalyzed the bioconversion of low-value epimedin C in crude Epimedium Folium flavonoids (EFs) to icariin and baohuoside I was developed. Firs...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shanshan, Lu, Changning, Cao, Shiping, Li, Qi, Wu, Guangwei, Zhao, Linguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311867/
https://www.ncbi.nlm.nih.gov/pubmed/37386510
http://dx.doi.org/10.1186/s13068-023-02348-6
Descripción
Sumario:Industrial application of icariin and baohuoside I has been hindered by the short supply to a great extent. In this work, a novel GH78 α-l-rhamnosidase AmRha catalyzed the bioconversion of low-value epimedin C in crude Epimedium Folium flavonoids (EFs) to icariin and baohuoside I was developed. Firstly, the high-level expression of AmRha in Komagataella phaffii GS115 attained an enzyme activity of 571.04 U/mL. The purified recombinant AmRha could hydrolyze α-1,2-rhamnoside bond between two rhamnoses (α-Rha(2 → 1)α-Rha) in epimedin C to produce icariin with a molar conversion rate of 92.3%, in vitro. Furtherly, the biotransformation of epimedin C to icariin by the recombinant Komagataella phaffii GS115 cells was also investigated, which elevated the EFs concentration by fivefold. In addition, biotransformation of epimedins A-C and icariin in the raw EFs to baohuoside I was fulfilled by a collaboration of AmRha and β-glucosidase/β-xylosidase Dth3. The results obtained here provide a new insight into the preparation of high-value products icariin and baohuoside I from cheap raw EFs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-023-02348-6.