Cargando…
Synthesis, antimycobacterial evaluation, and molecular docking study of 1,2,4-triazole derivatives
Fifteen 1,2,4-triazole derivatives were synthesised in this study and their MIC values against Mycobacterium tuberculosis (Mtb) ranged from 2 to 32 μg/mL. Furthermore, their antimycobacterial activity was positively correlated with the KatG enzyme docking score. Among the 15 compounds, compound 4 sh...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312031/ https://www.ncbi.nlm.nih.gov/pubmed/37381729 http://dx.doi.org/10.1080/14756366.2023.2229070 |
Sumario: | Fifteen 1,2,4-triazole derivatives were synthesised in this study and their MIC values against Mycobacterium tuberculosis (Mtb) ranged from 2 to 32 μg/mL. Furthermore, their antimycobacterial activity was positively correlated with the KatG enzyme docking score. Among the 15 compounds, compound 4 showed the strongest bactericidal activity with an MIC of 2 μg/mL. The selectivity index of compound 4 is more than 10, indicating that the compound has low toxicity to animal cells and has the potential to become a drug. Molecular docking indicates that compound 4 can bind firmly to the Mtb KatG active site. The experimental results showed that compound 4 inhibited Mtb KatG and caused the accumulation of ROS in Mtb cells. We speculate that compound 4 causes the accumulation of ROS by inhibiting KatG, and ROS produces oxidative destruction, leading to the death of Mtb. This study provides a new idea for the development of novel anti-Mtb drugs. |
---|