Cargando…
Temporal Mapper: Transition networks in simulated and real neural dynamics
Characterizing large-scale dynamic organization of the brain relies on both data-driven and mechanistic modeling, which demands a low versus high level of prior knowledge and assumptions about how constituents of the brain interact. However, the conceptual translation between the two is not straight...
Autores principales: | Zhang, Mengsen, Chowdhury, Samir, Saggar, Manish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312258/ https://www.ncbi.nlm.nih.gov/pubmed/37397880 http://dx.doi.org/10.1162/netn_a_00301 |
Ejemplares similares
-
Deconstructing the Mapper algorithm to extract richer topological and temporal features from functional neuroimaging data
por: Haşegan, Daniel, et al.
Publicado: (2023) -
NeuMapper: A scalable computational framework for multiscale exploration of the brain’s dynamical organization
por: Geniesse, Caleb, et al.
Publicado: (2022) -
Extracting the dynamics of the Hodgkin-Huxley model using recurrent neural networks
por: Andoni, Sari, et al.
Publicado: (2007) -
BitMapper: an efficient all-mapper based on bit-vector computing
por: Cheng, Haoyu, et al.
Publicado: (2015) -
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021)