Cargando…
Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture
A characteristic feature of human cognition is our ability to ‘multi-task’—performing two or more tasks in parallel—particularly when one task is well learned. How the brain supports this capacity remains poorly understood. Most past studies have focussed on identifying the areas of the brain—typica...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312290/ https://www.ncbi.nlm.nih.gov/pubmed/37397895 http://dx.doi.org/10.1162/netn_a_00308 |
_version_ | 1785066905797656576 |
---|---|
author | Müller, Eli J. Palesi, Fulvia Hou, Kevin Y. Tan, Joshua Close, Thomas Gandini Wheeler-Kingschott, Claudia A. M. D’Angelo, Egidio Calamante, Fernando Shine, James M. |
author_facet | Müller, Eli J. Palesi, Fulvia Hou, Kevin Y. Tan, Joshua Close, Thomas Gandini Wheeler-Kingschott, Claudia A. M. D’Angelo, Egidio Calamante, Fernando Shine, James M. |
author_sort | Müller, Eli J. |
collection | PubMed |
description | A characteristic feature of human cognition is our ability to ‘multi-task’—performing two or more tasks in parallel—particularly when one task is well learned. How the brain supports this capacity remains poorly understood. Most past studies have focussed on identifying the areas of the brain—typically the dorsolateral prefrontal cortex—that are required to navigate information-processing bottlenecks. In contrast, we take a systems neuroscience approach to test the hypothesis that the capacity to conduct effective parallel processing relies on a distributed architecture that interconnects the cerebral cortex with the cerebellum. The latter structure contains over half of the neurons in the adult human brain and is well suited to support the fast, effective, dynamic sequences required to perform tasks relatively automatically. By delegating stereotyped within-task computations to the cerebellum, the cerebral cortex can be freed up to focus on the more challenging aspects of performing the tasks in parallel. To test this hypothesis, we analysed task-based fMRI data from 50 participants who performed a task in which they either balanced an avatar on a screen (balance), performed serial-7 subtractions (calculation) or performed both in parallel (dual task). Using a set of approaches that include dimensionality reduction, structure-function coupling, and time-varying functional connectivity, we provide robust evidence in support of our hypothesis. We conclude that distributed interactions between the cerebral cortex and cerebellum are crucially involved in parallel processing in the human brain. |
format | Online Article Text |
id | pubmed-10312290 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MIT Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103122902023-07-01 Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture Müller, Eli J. Palesi, Fulvia Hou, Kevin Y. Tan, Joshua Close, Thomas Gandini Wheeler-Kingschott, Claudia A. M. D’Angelo, Egidio Calamante, Fernando Shine, James M. Netw Neurosci Research Article A characteristic feature of human cognition is our ability to ‘multi-task’—performing two or more tasks in parallel—particularly when one task is well learned. How the brain supports this capacity remains poorly understood. Most past studies have focussed on identifying the areas of the brain—typically the dorsolateral prefrontal cortex—that are required to navigate information-processing bottlenecks. In contrast, we take a systems neuroscience approach to test the hypothesis that the capacity to conduct effective parallel processing relies on a distributed architecture that interconnects the cerebral cortex with the cerebellum. The latter structure contains over half of the neurons in the adult human brain and is well suited to support the fast, effective, dynamic sequences required to perform tasks relatively automatically. By delegating stereotyped within-task computations to the cerebellum, the cerebral cortex can be freed up to focus on the more challenging aspects of performing the tasks in parallel. To test this hypothesis, we analysed task-based fMRI data from 50 participants who performed a task in which they either balanced an avatar on a screen (balance), performed serial-7 subtractions (calculation) or performed both in parallel (dual task). Using a set of approaches that include dimensionality reduction, structure-function coupling, and time-varying functional connectivity, we provide robust evidence in support of our hypothesis. We conclude that distributed interactions between the cerebral cortex and cerebellum are crucially involved in parallel processing in the human brain. MIT Press 2023-06-30 /pmc/articles/PMC10312290/ /pubmed/37397895 http://dx.doi.org/10.1162/netn_a_00308 Text en © 2023 Massachusetts Institute of Technology https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Müller, Eli J. Palesi, Fulvia Hou, Kevin Y. Tan, Joshua Close, Thomas Gandini Wheeler-Kingschott, Claudia A. M. D’Angelo, Egidio Calamante, Fernando Shine, James M. Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture |
title | Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture |
title_full | Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture |
title_fullStr | Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture |
title_full_unstemmed | Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture |
title_short | Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture |
title_sort | parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312290/ https://www.ncbi.nlm.nih.gov/pubmed/37397895 http://dx.doi.org/10.1162/netn_a_00308 |
work_keys_str_mv | AT mullerelij parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT palesifulvia parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT houkeviny parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT tanjoshua parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT closethomas parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT gandiniwheelerkingschottclaudiaam parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT dangeloegidio parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT calamantefernando parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture AT shinejamesm parallelprocessingreliesonadistributedlowdimensionalcorticocerebellararchitecture |