Cargando…

The role of epidemic spreading in seizure dynamics and epilepsy surgery

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but only leads to seizure freedom for roughly two in three patients. To address this problem, we designed a patient-specific epilepsy surgery model combining large-scale magnetoencephalography (MEG) brain networks with...

Descripción completa

Detalles Bibliográficos
Autores principales: Millán, Ana P., van Straaten, Elisabeth C. W., Stam, Cornelis J., Nissen, Ida A., Idema, Sander, Baayen, Johannes C., Van Mieghem, Piet, Hillebrand, Arjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MIT Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312291/
https://www.ncbi.nlm.nih.gov/pubmed/37397878
http://dx.doi.org/10.1162/netn_a_00305
_version_ 1785066906037780480
author Millán, Ana P.
van Straaten, Elisabeth C. W.
Stam, Cornelis J.
Nissen, Ida A.
Idema, Sander
Baayen, Johannes C.
Van Mieghem, Piet
Hillebrand, Arjan
author_facet Millán, Ana P.
van Straaten, Elisabeth C. W.
Stam, Cornelis J.
Nissen, Ida A.
Idema, Sander
Baayen, Johannes C.
Van Mieghem, Piet
Hillebrand, Arjan
author_sort Millán, Ana P.
collection PubMed
description Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but only leads to seizure freedom for roughly two in three patients. To address this problem, we designed a patient-specific epilepsy surgery model combining large-scale magnetoencephalography (MEG) brain networks with an epidemic spreading model. This simple model was enough to reproduce the stereo-tactical electroencephalography (SEEG) seizure propagation patterns of all patients (N = 15), when considering the resection areas (RA) as the epidemic seed. Moreover, the goodness of fit of the model predicted surgical outcome. Once adapted for each patient, the model can generate alternative hypothesis of the seizure onset zone and test different resection strategies in silico. Overall, our findings indicate that spreading models based on patient-specific MEG connectivity can be used to predict surgical outcomes, with better fit results and greater reduction on seizure propagation linked to higher likelihood of seizure freedom after surgery. Finally, we introduced a population model that can be individualized by considering only the patient-specific MEG network, and showed that it not only conserves but improves the group classification. Thus, it may pave the way to generalize this framework to patients without SEEG recordings, reduce the risk of overfitting and improve the stability of the analyses.
format Online
Article
Text
id pubmed-10312291
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MIT Press
record_format MEDLINE/PubMed
spelling pubmed-103122912023-07-01 The role of epidemic spreading in seizure dynamics and epilepsy surgery Millán, Ana P. van Straaten, Elisabeth C. W. Stam, Cornelis J. Nissen, Ida A. Idema, Sander Baayen, Johannes C. Van Mieghem, Piet Hillebrand, Arjan Netw Neurosci Research Article Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but only leads to seizure freedom for roughly two in three patients. To address this problem, we designed a patient-specific epilepsy surgery model combining large-scale magnetoencephalography (MEG) brain networks with an epidemic spreading model. This simple model was enough to reproduce the stereo-tactical electroencephalography (SEEG) seizure propagation patterns of all patients (N = 15), when considering the resection areas (RA) as the epidemic seed. Moreover, the goodness of fit of the model predicted surgical outcome. Once adapted for each patient, the model can generate alternative hypothesis of the seizure onset zone and test different resection strategies in silico. Overall, our findings indicate that spreading models based on patient-specific MEG connectivity can be used to predict surgical outcomes, with better fit results and greater reduction on seizure propagation linked to higher likelihood of seizure freedom after surgery. Finally, we introduced a population model that can be individualized by considering only the patient-specific MEG network, and showed that it not only conserves but improves the group classification. Thus, it may pave the way to generalize this framework to patients without SEEG recordings, reduce the risk of overfitting and improve the stability of the analyses. MIT Press 2023-06-30 /pmc/articles/PMC10312291/ /pubmed/37397878 http://dx.doi.org/10.1162/netn_a_00305 Text en © 2023 Massachusetts Institute of Technology https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/.
spellingShingle Research Article
Millán, Ana P.
van Straaten, Elisabeth C. W.
Stam, Cornelis J.
Nissen, Ida A.
Idema, Sander
Baayen, Johannes C.
Van Mieghem, Piet
Hillebrand, Arjan
The role of epidemic spreading in seizure dynamics and epilepsy surgery
title The role of epidemic spreading in seizure dynamics and epilepsy surgery
title_full The role of epidemic spreading in seizure dynamics and epilepsy surgery
title_fullStr The role of epidemic spreading in seizure dynamics and epilepsy surgery
title_full_unstemmed The role of epidemic spreading in seizure dynamics and epilepsy surgery
title_short The role of epidemic spreading in seizure dynamics and epilepsy surgery
title_sort role of epidemic spreading in seizure dynamics and epilepsy surgery
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312291/
https://www.ncbi.nlm.nih.gov/pubmed/37397878
http://dx.doi.org/10.1162/netn_a_00305
work_keys_str_mv AT millananap theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT vanstraatenelisabethcw theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT stamcornelisj theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT nissenidaa theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT idemasander theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT baayenjohannesc theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT vanmieghempiet theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT hillebrandarjan theroleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT millananap roleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT vanstraatenelisabethcw roleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT stamcornelisj roleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT nissenidaa roleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT idemasander roleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT baayenjohannesc roleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT vanmieghempiet roleofepidemicspreadinginseizuredynamicsandepilepsysurgery
AT hillebrandarjan roleofepidemicspreadinginseizuredynamicsandepilepsysurgery