Cargando…
SCS: cell segmentation for high-resolution spatial transcriptomics
Spatial transcriptomics promises to greatly improve our understanding of tissue organization and cell-cell interactions. While most current platforms for spatial transcriptomics only offer multi-cellular resolution, with 10–15 cells per spot, recent technologies provide a much denser spot placement...
Autores principales: | Chen, Hao, Li, Dongshunyi, Bar-Joseph, Ziv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312435/ https://www.ncbi.nlm.nih.gov/pubmed/37398213 http://dx.doi.org/10.1101/2023.01.11.523658 |
Ejemplares similares
-
Unsupervised cell functional annotation for single-cell RNA-seq
por: Li, Dongshunyi, et al.
Publicado: (2022) -
New Properties of Drosophila scs and scs’ Insulators
por: Kyrchanova, Olga, et al.
Publicado: (2013) -
Membrane marker selection for segmenting single cell spatial proteomics data
por: Dayao, Monica T., et al.
Publicado: (2022) -
TraSig: inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data
por: Li, Dongshunyi, et al.
Publicado: (2022) -
SCS Simulators Conference
Publicado: (1988)