Cargando…
Classifying high-dimensional phenotypes with ensemble learning
1. Classification is a fundamental task in biology used to assign members to a class. While linear discriminant functions have long been effective, advances in phenotypic data collection are yielding increasingly high-dimensional datasets with more classes, unequal class covariances, and non-linear...
Autores principales: | Devine, Jay, Kurki, Helen K., Epp, Jonathan R., Gonzalez, Paula N., Claes, Peter, Hallgrímsson, Benedikt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312448/ https://www.ncbi.nlm.nih.gov/pubmed/37398168 http://dx.doi.org/10.1101/2023.05.29.542750 |
Ejemplares similares
-
Phenotype Recognition with Combined Features and Random Subspace Classifier Ensemble
por: Zhang, Bailing, et al.
Publicado: (2011) -
Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
por: Pourreza Shahri, Morteza, et al.
Publicado: (2021) -
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
por: Datta, Susmita, et al.
Publicado: (2010) -
Selection for increased tibia length in mice alters skull shape through parallel changes in developmental mechanisms
por: Unger, Colton M, et al.
Publicado: (2021) -
Quantum ensembles of quantum classifiers
por: Schuld, Maria, et al.
Publicado: (2018)