Cargando…

Boosting Single-Cell RNA Sequencing Analysis with Simple Neural Attention

A limitation of current deep learning (DL) approaches for single-cell RNA sequencing (scRNAseq) analysis is the lack of interpretability. Moreover, existing pipelines are designed and trained for specific tasks used disjointly for different stages of analysis. We present scANNA, a novel interpretabl...

Descripción completa

Detalles Bibliográficos
Autores principales: Davalos, Oscar A., Heydari, A. Ali, Fertig, Elana J., Sindi, Suzanne S., Hoyer, Katrina K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312486/
https://www.ncbi.nlm.nih.gov/pubmed/37398136
http://dx.doi.org/10.1101/2023.05.29.542760
Descripción
Sumario:A limitation of current deep learning (DL) approaches for single-cell RNA sequencing (scRNAseq) analysis is the lack of interpretability. Moreover, existing pipelines are designed and trained for specific tasks used disjointly for different stages of analysis. We present scANNA, a novel interpretable DL model for scRNAseq studies that leverages neural attention to learn gene associations. After training, the learned gene importance (interpretability) is used to perform downstream analyses (e.g., global marker selection and cell-type classification) without retraining. ScANNA’s performance is comparable to or better than state-of-the-art methods designed and trained for specific standard scRNAseq analyses even though scANNA was not trained for these tasks explicitly. ScANNA enables researchers to discover meaningful results without extensive prior knowledge or training separate task-specific models, saving time and enhancing scRNAseq analyses.