Cargando…
Boosting Single-Cell RNA Sequencing Analysis with Simple Neural Attention
A limitation of current deep learning (DL) approaches for single-cell RNA sequencing (scRNAseq) analysis is the lack of interpretability. Moreover, existing pipelines are designed and trained for specific tasks used disjointly for different stages of analysis. We present scANNA, a novel interpretabl...
Autores principales: | Davalos, Oscar A., Heydari, A. Ali, Fertig, Elana J., Sindi, Suzanne S., Hoyer, Katrina K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312486/ https://www.ncbi.nlm.nih.gov/pubmed/37398136 http://dx.doi.org/10.1101/2023.05.29.542760 |
Ejemplares similares
-
Transcriptomic forecasting with neural ordinary differential equations
por: Erbe, Rossin, et al.
Publicado: (2023) -
Generating colorblind-friendly scatter plots for single-cell data
por: Guha, Tejas, et al.
Publicado: (2022) -
A Mentee’s Baby Registry: Supporting New Academic Parents in 2020
por: Fertig, Elana J.
Publicado: (2020) -
CoGAPS 3: Bayesian non-negative matrix factorization for single-cell analysis with asynchronous updates and sparse data structures
por: Sherman, Thomas D., et al.
Publicado: (2020) -
Attentional Load and Attentional Boost: A Review of Data and Theory
por: Swallow, Khena M., et al.
Publicado: (2013)