Cargando…
Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN
Cryo-electron tomography (cryo-ET) allows one to observe macromolecular complexes in their native, spatially contextualized environment. Tools to visualize such complexes at nanometer resolution via iterative alignment and averaging are well-developed but rely on assumptions of structural homogeneit...
Autores principales: | Powell, Barrett M., Davis, Joseph H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312494/ https://www.ncbi.nlm.nih.gov/pubmed/37398315 http://dx.doi.org/10.1101/2023.05.31.542975 |
Ejemplares similares
-
CryoDRGN: Reconstruction of heterogeneous cryo-EM structures using neural networks
por: Zhong, Ellen D., et al.
Publicado: (2021) -
TomoTwin: generalized 3D localization of macromolecules in cryo-electron tomograms with structural data mining
por: Rice, Gavin, et al.
Publicado: (2023) -
Graph identification of proteins in tomograms (GRIP‐Tomo)
por: George, August, et al.
Publicado: (2023) -
Few-shot learning for classification of novel macromolecular structures in cryo-electron tomograms
por: Li, Ran, et al.
Publicado: (2020) -
Self-supervised learning for macromolecular structure classification based on cryo-electron tomograms
por: Gupta, Tarun, et al.
Publicado: (2022)