Cargando…

Synaptic architecture of leg and wing motor control networks in Drosophila

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains l...

Descripción completa

Detalles Bibliográficos
Autores principales: Lesser, Ellen, Azevedo, Anthony W., Phelps, Jasper S., Elabbady, Leila, Cook, Andrew, Mark, Brandon, Kuroda, Sumiya, Sustar, Anne, Moussa, Anthony, Dallmann, Chris J., Agrawal, Sweta, Lee, Su-Yee J., Pratt, Brandon, Skutt-Kakaria, Kyobi, Gerhard, Stephan, Lu, Ran, Kemnitz, Nico, Lee, Kisuk, Halageri, Akhilesh, Castro, Manuel, Ih, Dodam, Gager, Jay, Tammam, Marwan, Dorkenwald, Sven, Collman, Forrest, Schneider-Mizell, Casey, Brittain, Derrick, Jordan, Chris S., Seung, H. Sebastian, Macrina, Thomas, Dickinson, Michael, Lee, Wei-Chung Allen, Tuthill, John C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312524/
https://www.ncbi.nlm.nih.gov/pubmed/37398440
http://dx.doi.org/10.1101/2023.05.30.542725
_version_ 1785066944179732480
author Lesser, Ellen
Azevedo, Anthony W.
Phelps, Jasper S.
Elabbady, Leila
Cook, Andrew
Mark, Brandon
Kuroda, Sumiya
Sustar, Anne
Moussa, Anthony
Dallmann, Chris J.
Agrawal, Sweta
Lee, Su-Yee J.
Pratt, Brandon
Skutt-Kakaria, Kyobi
Gerhard, Stephan
Lu, Ran
Kemnitz, Nico
Lee, Kisuk
Halageri, Akhilesh
Castro, Manuel
Ih, Dodam
Gager, Jay
Tammam, Marwan
Dorkenwald, Sven
Collman, Forrest
Schneider-Mizell, Casey
Brittain, Derrick
Jordan, Chris S.
Seung, H. Sebastian
Macrina, Thomas
Dickinson, Michael
Lee, Wei-Chung Allen
Tuthill, John C.
author_facet Lesser, Ellen
Azevedo, Anthony W.
Phelps, Jasper S.
Elabbady, Leila
Cook, Andrew
Mark, Brandon
Kuroda, Sumiya
Sustar, Anne
Moussa, Anthony
Dallmann, Chris J.
Agrawal, Sweta
Lee, Su-Yee J.
Pratt, Brandon
Skutt-Kakaria, Kyobi
Gerhard, Stephan
Lu, Ran
Kemnitz, Nico
Lee, Kisuk
Halageri, Akhilesh
Castro, Manuel
Ih, Dodam
Gager, Jay
Tammam, Marwan
Dorkenwald, Sven
Collman, Forrest
Schneider-Mizell, Casey
Brittain, Derrick
Jordan, Chris S.
Seung, H. Sebastian
Macrina, Thomas
Dickinson, Michael
Lee, Wei-Chung Allen
Tuthill, John C.
author_sort Lesser, Ellen
collection PubMed
description Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
format Online
Article
Text
id pubmed-10312524
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103125242023-07-01 Synaptic architecture of leg and wing motor control networks in Drosophila Lesser, Ellen Azevedo, Anthony W. Phelps, Jasper S. Elabbady, Leila Cook, Andrew Mark, Brandon Kuroda, Sumiya Sustar, Anne Moussa, Anthony Dallmann, Chris J. Agrawal, Sweta Lee, Su-Yee J. Pratt, Brandon Skutt-Kakaria, Kyobi Gerhard, Stephan Lu, Ran Kemnitz, Nico Lee, Kisuk Halageri, Akhilesh Castro, Manuel Ih, Dodam Gager, Jay Tammam, Marwan Dorkenwald, Sven Collman, Forrest Schneider-Mizell, Casey Brittain, Derrick Jordan, Chris S. Seung, H. Sebastian Macrina, Thomas Dickinson, Michael Lee, Wei-Chung Allen Tuthill, John C. bioRxiv Article Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control. Cold Spring Harbor Laboratory 2023-05-31 /pmc/articles/PMC10312524/ /pubmed/37398440 http://dx.doi.org/10.1101/2023.05.30.542725 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Lesser, Ellen
Azevedo, Anthony W.
Phelps, Jasper S.
Elabbady, Leila
Cook, Andrew
Mark, Brandon
Kuroda, Sumiya
Sustar, Anne
Moussa, Anthony
Dallmann, Chris J.
Agrawal, Sweta
Lee, Su-Yee J.
Pratt, Brandon
Skutt-Kakaria, Kyobi
Gerhard, Stephan
Lu, Ran
Kemnitz, Nico
Lee, Kisuk
Halageri, Akhilesh
Castro, Manuel
Ih, Dodam
Gager, Jay
Tammam, Marwan
Dorkenwald, Sven
Collman, Forrest
Schneider-Mizell, Casey
Brittain, Derrick
Jordan, Chris S.
Seung, H. Sebastian
Macrina, Thomas
Dickinson, Michael
Lee, Wei-Chung Allen
Tuthill, John C.
Synaptic architecture of leg and wing motor control networks in Drosophila
title Synaptic architecture of leg and wing motor control networks in Drosophila
title_full Synaptic architecture of leg and wing motor control networks in Drosophila
title_fullStr Synaptic architecture of leg and wing motor control networks in Drosophila
title_full_unstemmed Synaptic architecture of leg and wing motor control networks in Drosophila
title_short Synaptic architecture of leg and wing motor control networks in Drosophila
title_sort synaptic architecture of leg and wing motor control networks in drosophila
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312524/
https://www.ncbi.nlm.nih.gov/pubmed/37398440
http://dx.doi.org/10.1101/2023.05.30.542725
work_keys_str_mv AT lesserellen synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT azevedoanthonyw synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT phelpsjaspers synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT elabbadyleila synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT cookandrew synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT markbrandon synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT kurodasumiya synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT sustaranne synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT moussaanthony synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT dallmannchrisj synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT agrawalsweta synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT leesuyeej synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT prattbrandon synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT skuttkakariakyobi synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT gerhardstephan synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT luran synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT kemnitznico synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT leekisuk synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT halageriakhilesh synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT castromanuel synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT ihdodam synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT gagerjay synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT tammammarwan synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT dorkenwaldsven synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT collmanforrest synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT schneidermizellcasey synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT brittainderrick synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT jordanchriss synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT seunghsebastian synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT macrinathomas synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT dickinsonmichael synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT leeweichungallen synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila
AT tuthilljohnc synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila