Cargando…
Synaptic architecture of leg and wing motor control networks in Drosophila
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains l...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312524/ https://www.ncbi.nlm.nih.gov/pubmed/37398440 http://dx.doi.org/10.1101/2023.05.30.542725 |
_version_ | 1785066944179732480 |
---|---|
author | Lesser, Ellen Azevedo, Anthony W. Phelps, Jasper S. Elabbady, Leila Cook, Andrew Mark, Brandon Kuroda, Sumiya Sustar, Anne Moussa, Anthony Dallmann, Chris J. Agrawal, Sweta Lee, Su-Yee J. Pratt, Brandon Skutt-Kakaria, Kyobi Gerhard, Stephan Lu, Ran Kemnitz, Nico Lee, Kisuk Halageri, Akhilesh Castro, Manuel Ih, Dodam Gager, Jay Tammam, Marwan Dorkenwald, Sven Collman, Forrest Schneider-Mizell, Casey Brittain, Derrick Jordan, Chris S. Seung, H. Sebastian Macrina, Thomas Dickinson, Michael Lee, Wei-Chung Allen Tuthill, John C. |
author_facet | Lesser, Ellen Azevedo, Anthony W. Phelps, Jasper S. Elabbady, Leila Cook, Andrew Mark, Brandon Kuroda, Sumiya Sustar, Anne Moussa, Anthony Dallmann, Chris J. Agrawal, Sweta Lee, Su-Yee J. Pratt, Brandon Skutt-Kakaria, Kyobi Gerhard, Stephan Lu, Ran Kemnitz, Nico Lee, Kisuk Halageri, Akhilesh Castro, Manuel Ih, Dodam Gager, Jay Tammam, Marwan Dorkenwald, Sven Collman, Forrest Schneider-Mizell, Casey Brittain, Derrick Jordan, Chris S. Seung, H. Sebastian Macrina, Thomas Dickinson, Michael Lee, Wei-Chung Allen Tuthill, John C. |
author_sort | Lesser, Ellen |
collection | PubMed |
description | Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control. |
format | Online Article Text |
id | pubmed-10312524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-103125242023-07-01 Synaptic architecture of leg and wing motor control networks in Drosophila Lesser, Ellen Azevedo, Anthony W. Phelps, Jasper S. Elabbady, Leila Cook, Andrew Mark, Brandon Kuroda, Sumiya Sustar, Anne Moussa, Anthony Dallmann, Chris J. Agrawal, Sweta Lee, Su-Yee J. Pratt, Brandon Skutt-Kakaria, Kyobi Gerhard, Stephan Lu, Ran Kemnitz, Nico Lee, Kisuk Halageri, Akhilesh Castro, Manuel Ih, Dodam Gager, Jay Tammam, Marwan Dorkenwald, Sven Collman, Forrest Schneider-Mizell, Casey Brittain, Derrick Jordan, Chris S. Seung, H. Sebastian Macrina, Thomas Dickinson, Michael Lee, Wei-Chung Allen Tuthill, John C. bioRxiv Article Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control. Cold Spring Harbor Laboratory 2023-05-31 /pmc/articles/PMC10312524/ /pubmed/37398440 http://dx.doi.org/10.1101/2023.05.30.542725 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Lesser, Ellen Azevedo, Anthony W. Phelps, Jasper S. Elabbady, Leila Cook, Andrew Mark, Brandon Kuroda, Sumiya Sustar, Anne Moussa, Anthony Dallmann, Chris J. Agrawal, Sweta Lee, Su-Yee J. Pratt, Brandon Skutt-Kakaria, Kyobi Gerhard, Stephan Lu, Ran Kemnitz, Nico Lee, Kisuk Halageri, Akhilesh Castro, Manuel Ih, Dodam Gager, Jay Tammam, Marwan Dorkenwald, Sven Collman, Forrest Schneider-Mizell, Casey Brittain, Derrick Jordan, Chris S. Seung, H. Sebastian Macrina, Thomas Dickinson, Michael Lee, Wei-Chung Allen Tuthill, John C. Synaptic architecture of leg and wing motor control networks in Drosophila |
title | Synaptic architecture of leg and wing motor control networks in Drosophila |
title_full | Synaptic architecture of leg and wing motor control networks in Drosophila |
title_fullStr | Synaptic architecture of leg and wing motor control networks in Drosophila |
title_full_unstemmed | Synaptic architecture of leg and wing motor control networks in Drosophila |
title_short | Synaptic architecture of leg and wing motor control networks in Drosophila |
title_sort | synaptic architecture of leg and wing motor control networks in drosophila |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312524/ https://www.ncbi.nlm.nih.gov/pubmed/37398440 http://dx.doi.org/10.1101/2023.05.30.542725 |
work_keys_str_mv | AT lesserellen synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT azevedoanthonyw synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT phelpsjaspers synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT elabbadyleila synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT cookandrew synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT markbrandon synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT kurodasumiya synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT sustaranne synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT moussaanthony synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT dallmannchrisj synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT agrawalsweta synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT leesuyeej synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT prattbrandon synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT skuttkakariakyobi synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT gerhardstephan synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT luran synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT kemnitznico synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT leekisuk synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT halageriakhilesh synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT castromanuel synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT ihdodam synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT gagerjay synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT tammammarwan synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT dorkenwaldsven synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT collmanforrest synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT schneidermizellcasey synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT brittainderrick synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT jordanchriss synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT seunghsebastian synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT macrinathomas synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT dickinsonmichael synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT leeweichungallen synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila AT tuthilljohnc synapticarchitectureoflegandwingmotorcontrolnetworksindrosophila |