Cargando…

Dendritic voltage imaging reveals biophysical basis of associative plasticity rules

Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs), where these signals interact with synaptic inputs to strengthen or weaken individual synapses. To study dendritic integration and associative plasticity rules, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Pojeong, Wong-Campos, David, Itkis, Daniel G., Qi, Yitong, Davis, Hunter, Grimm, Jonathan B., Plutkis, Sarah E., Lavis, Luke, Cohen, Adam E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312650/
https://www.ncbi.nlm.nih.gov/pubmed/37398232
http://dx.doi.org/10.1101/2023.06.02.543490
_version_ 1785066964058636288
author Park, Pojeong
Wong-Campos, David
Itkis, Daniel G.
Qi, Yitong
Davis, Hunter
Grimm, Jonathan B.
Plutkis, Sarah E.
Lavis, Luke
Cohen, Adam E.
author_facet Park, Pojeong
Wong-Campos, David
Itkis, Daniel G.
Qi, Yitong
Davis, Hunter
Grimm, Jonathan B.
Plutkis, Sarah E.
Lavis, Luke
Cohen, Adam E.
author_sort Park, Pojeong
collection PubMed
description Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs), where these signals interact with synaptic inputs to strengthen or weaken individual synapses. To study dendritic integration and associative plasticity rules, we developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons in acute brain slices. Our data show history-dependent bAP propagation in distal dendrites, driven by locally generated Na(+) spikes (dSpikes). Dendritic depolarization led to a transient window for dSpike propagation, opened by A-type K(V) channel inactivation, and closed by slow Na(V) inactivation. Collisions of dSpikes with synaptic inputs triggered N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials. These results, combined with numerical simulations, paint an intuitive picture connecting dendritic biophysics to associative plasticity rules.
format Online
Article
Text
id pubmed-10312650
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103126502023-07-01 Dendritic voltage imaging reveals biophysical basis of associative plasticity rules Park, Pojeong Wong-Campos, David Itkis, Daniel G. Qi, Yitong Davis, Hunter Grimm, Jonathan B. Plutkis, Sarah E. Lavis, Luke Cohen, Adam E. bioRxiv Article Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs), where these signals interact with synaptic inputs to strengthen or weaken individual synapses. To study dendritic integration and associative plasticity rules, we developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons in acute brain slices. Our data show history-dependent bAP propagation in distal dendrites, driven by locally generated Na(+) spikes (dSpikes). Dendritic depolarization led to a transient window for dSpike propagation, opened by A-type K(V) channel inactivation, and closed by slow Na(V) inactivation. Collisions of dSpikes with synaptic inputs triggered N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials. These results, combined with numerical simulations, paint an intuitive picture connecting dendritic biophysics to associative plasticity rules. Cold Spring Harbor Laboratory 2023-06-02 /pmc/articles/PMC10312650/ /pubmed/37398232 http://dx.doi.org/10.1101/2023.06.02.543490 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Park, Pojeong
Wong-Campos, David
Itkis, Daniel G.
Qi, Yitong
Davis, Hunter
Grimm, Jonathan B.
Plutkis, Sarah E.
Lavis, Luke
Cohen, Adam E.
Dendritic voltage imaging reveals biophysical basis of associative plasticity rules
title Dendritic voltage imaging reveals biophysical basis of associative plasticity rules
title_full Dendritic voltage imaging reveals biophysical basis of associative plasticity rules
title_fullStr Dendritic voltage imaging reveals biophysical basis of associative plasticity rules
title_full_unstemmed Dendritic voltage imaging reveals biophysical basis of associative plasticity rules
title_short Dendritic voltage imaging reveals biophysical basis of associative plasticity rules
title_sort dendritic voltage imaging reveals biophysical basis of associative plasticity rules
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312650/
https://www.ncbi.nlm.nih.gov/pubmed/37398232
http://dx.doi.org/10.1101/2023.06.02.543490
work_keys_str_mv AT parkpojeong dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT wongcamposdavid dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT itkisdanielg dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT qiyitong dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT davishunter dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT grimmjonathanb dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT plutkissarahe dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT lavisluke dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules
AT cohenadame dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules