Cargando…
Dendritic voltage imaging reveals biophysical basis of associative plasticity rules
Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs), where these signals interact with synaptic inputs to strengthen or weaken individual synapses. To study dendritic integration and associative plasticity rules, w...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312650/ https://www.ncbi.nlm.nih.gov/pubmed/37398232 http://dx.doi.org/10.1101/2023.06.02.543490 |
_version_ | 1785066964058636288 |
---|---|
author | Park, Pojeong Wong-Campos, David Itkis, Daniel G. Qi, Yitong Davis, Hunter Grimm, Jonathan B. Plutkis, Sarah E. Lavis, Luke Cohen, Adam E. |
author_facet | Park, Pojeong Wong-Campos, David Itkis, Daniel G. Qi, Yitong Davis, Hunter Grimm, Jonathan B. Plutkis, Sarah E. Lavis, Luke Cohen, Adam E. |
author_sort | Park, Pojeong |
collection | PubMed |
description | Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs), where these signals interact with synaptic inputs to strengthen or weaken individual synapses. To study dendritic integration and associative plasticity rules, we developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons in acute brain slices. Our data show history-dependent bAP propagation in distal dendrites, driven by locally generated Na(+) spikes (dSpikes). Dendritic depolarization led to a transient window for dSpike propagation, opened by A-type K(V) channel inactivation, and closed by slow Na(V) inactivation. Collisions of dSpikes with synaptic inputs triggered N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials. These results, combined with numerical simulations, paint an intuitive picture connecting dendritic biophysics to associative plasticity rules. |
format | Online Article Text |
id | pubmed-10312650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-103126502023-07-01 Dendritic voltage imaging reveals biophysical basis of associative plasticity rules Park, Pojeong Wong-Campos, David Itkis, Daniel G. Qi, Yitong Davis, Hunter Grimm, Jonathan B. Plutkis, Sarah E. Lavis, Luke Cohen, Adam E. bioRxiv Article Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs), where these signals interact with synaptic inputs to strengthen or weaken individual synapses. To study dendritic integration and associative plasticity rules, we developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons in acute brain slices. Our data show history-dependent bAP propagation in distal dendrites, driven by locally generated Na(+) spikes (dSpikes). Dendritic depolarization led to a transient window for dSpike propagation, opened by A-type K(V) channel inactivation, and closed by slow Na(V) inactivation. Collisions of dSpikes with synaptic inputs triggered N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials. These results, combined with numerical simulations, paint an intuitive picture connecting dendritic biophysics to associative plasticity rules. Cold Spring Harbor Laboratory 2023-06-02 /pmc/articles/PMC10312650/ /pubmed/37398232 http://dx.doi.org/10.1101/2023.06.02.543490 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Park, Pojeong Wong-Campos, David Itkis, Daniel G. Qi, Yitong Davis, Hunter Grimm, Jonathan B. Plutkis, Sarah E. Lavis, Luke Cohen, Adam E. Dendritic voltage imaging reveals biophysical basis of associative plasticity rules |
title | Dendritic voltage imaging reveals biophysical basis of associative plasticity rules |
title_full | Dendritic voltage imaging reveals biophysical basis of associative plasticity rules |
title_fullStr | Dendritic voltage imaging reveals biophysical basis of associative plasticity rules |
title_full_unstemmed | Dendritic voltage imaging reveals biophysical basis of associative plasticity rules |
title_short | Dendritic voltage imaging reveals biophysical basis of associative plasticity rules |
title_sort | dendritic voltage imaging reveals biophysical basis of associative plasticity rules |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312650/ https://www.ncbi.nlm.nih.gov/pubmed/37398232 http://dx.doi.org/10.1101/2023.06.02.543490 |
work_keys_str_mv | AT parkpojeong dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT wongcamposdavid dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT itkisdanielg dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT qiyitong dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT davishunter dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT grimmjonathanb dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT plutkissarahe dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT lavisluke dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules AT cohenadame dendriticvoltageimagingrevealsbiophysicalbasisofassociativeplasticityrules |