Cargando…
Unbiased single-cell morphology with self-supervised vision transformers
Accurately quantifying cellular morphology at scale could substantially empower existing single-cell approaches. However, measuring cell morphology remains an active field of research, which has inspired multiple computer vision algorithms over the years. Here, we show that DINO, a vision-transforme...
Autores principales: | Doron, Michael, Moutakanni, Théo, Chen, Zitong S., Moshkov, Nikita, Caron, Mathilde, Touvron, Hugo, Bojanowski, Piotr, Pernice, Wolfgang M., Caicedo, Juan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312751/ https://www.ncbi.nlm.nih.gov/pubmed/37398158 http://dx.doi.org/10.1101/2023.06.16.545359 |
Ejemplares similares
-
Exploring Self-Supervised Vision Transformers for Gait Recognition in the Wild
por: Cosma, Adrian, et al.
Publicado: (2023) -
Transforming bioengineering with unbiased teams and tools
por: Jewell, Christopher M., et al.
Publicado: (2023) -
Semi-supervised vision transformer with adaptive token sampling for breast cancer classification
por: Wang, Wei, et al.
Publicado: (2022) -
Gait Recognition with Self-Supervised Learning of Gait Features Based on Vision Transformers
por: Pinčić, Domagoj, et al.
Publicado: (2022) -
Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors
por: Li, Zhongxiao, et al.
Publicado: (2022)