Cargando…

Reliability of energy landscape analysis of resting-state functional MRI data

Energy landscape analysis is a data-driven method to analyze multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics o...

Descripción completa

Detalles Bibliográficos
Autores principales: Khanra, Pitambar, Nakuci, Johan, Muldoon, Sarah, Watanabe, Takamitsu, Masuda, Naoki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312792/
https://www.ncbi.nlm.nih.gov/pubmed/37396616
Descripción
Sumario:Energy landscape analysis is a data-driven method to analyze multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e., within-participant reliability) than across different sets of sessions from different participants (i.e., between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.