Cargando…
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI
Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an i...
Autores principales: | Liu, Xiaofeng, Shih, Helen A., Xing, Fangxu, Santarnecchi, Emiliano, El Fakhri, Georges, Woo, Jonghye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312795/ https://www.ncbi.nlm.nih.gov/pubmed/37396599 |
Ejemplares similares
-
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
por: Liu, Xiaofeng, et al.
Publicado: (2022) -
Attentive Continuous Generative Self-training for Unsupervised Domain Adaptive Medical Image Translation
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Posterior Estimation Using Deep Learning: A Simulation Study of Compartmental Modeling in Dynamic PET
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities
por: Sprugnoli, Giulia, et al.
Publicado: (2021) -
Enhancing linguistic research through 2‐mm isotropic 3D dynamic speech MRI optimized by sparse temporal sampling and low‐rank reconstruction
por: Jin, Riwei, et al.
Publicado: (2022)