Cargando…

CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis

A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer’s disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Samelson, Avi J., Ariqat, Nabeela, McKetney, Justin, Rohanitazangi, Gita, Bravo, Celeste Parra, Goodness, Darrin, Tian, Ruilin, Grosjean, Parker, Abskharon, Romany, Eisenberg, David, Kanaan, Nicholas M., Gan, Li, Condello, Carlo, Swaney, Danielle L., Kampmann, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312804/
https://www.ncbi.nlm.nih.gov/pubmed/37398204
http://dx.doi.org/10.1101/2023.06.16.545386
_version_ 1785066989777059840
author Samelson, Avi J.
Ariqat, Nabeela
McKetney, Justin
Rohanitazangi, Gita
Bravo, Celeste Parra
Goodness, Darrin
Tian, Ruilin
Grosjean, Parker
Abskharon, Romany
Eisenberg, David
Kanaan, Nicholas M.
Gan, Li
Condello, Carlo
Swaney, Danielle L.
Kampmann, Martin
author_facet Samelson, Avi J.
Ariqat, Nabeela
McKetney, Justin
Rohanitazangi, Gita
Bravo, Celeste Parra
Goodness, Darrin
Tian, Ruilin
Grosjean, Parker
Abskharon, Romany
Eisenberg, David
Kanaan, Nicholas M.
Gan, Li
Condello, Carlo
Swaney, Danielle L.
Kampmann, Martin
author_sort Samelson, Avi J.
collection PubMed
description A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer’s disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and subsequent dysfunction and death. The mechanisms underlying cell type-selective vulnerability are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways including UFMylation and GPI anchor synthesis, that control tau oligomer levels. We identify the E3 ubiquitin ligase CUL5 as a tau interactor and potent modifier of tau levels. In addition, disruption of mitochondrial function increases tau oligomer levels and promotes proteasomal misprocessing of tau. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies.
format Online
Article
Text
id pubmed-10312804
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103128042023-07-01 CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis Samelson, Avi J. Ariqat, Nabeela McKetney, Justin Rohanitazangi, Gita Bravo, Celeste Parra Goodness, Darrin Tian, Ruilin Grosjean, Parker Abskharon, Romany Eisenberg, David Kanaan, Nicholas M. Gan, Li Condello, Carlo Swaney, Danielle L. Kampmann, Martin bioRxiv Article A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer’s disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and subsequent dysfunction and death. The mechanisms underlying cell type-selective vulnerability are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways including UFMylation and GPI anchor synthesis, that control tau oligomer levels. We identify the E3 ubiquitin ligase CUL5 as a tau interactor and potent modifier of tau levels. In addition, disruption of mitochondrial function increases tau oligomer levels and promotes proteasomal misprocessing of tau. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies. Cold Spring Harbor Laboratory 2023-06-26 /pmc/articles/PMC10312804/ /pubmed/37398204 http://dx.doi.org/10.1101/2023.06.16.545386 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Samelson, Avi J.
Ariqat, Nabeela
McKetney, Justin
Rohanitazangi, Gita
Bravo, Celeste Parra
Goodness, Darrin
Tian, Ruilin
Grosjean, Parker
Abskharon, Romany
Eisenberg, David
Kanaan, Nicholas M.
Gan, Li
Condello, Carlo
Swaney, Danielle L.
Kampmann, Martin
CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis
title CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis
title_full CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis
title_fullStr CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis
title_full_unstemmed CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis
title_short CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis
title_sort crispr screens in ipsc-derived neurons reveal principles of tau proteostasis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312804/
https://www.ncbi.nlm.nih.gov/pubmed/37398204
http://dx.doi.org/10.1101/2023.06.16.545386
work_keys_str_mv AT samelsonavij crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT ariqatnabeela crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT mcketneyjustin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT rohanitazangigita crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT bravocelesteparra crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT goodnessdarrin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT tianruilin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT grosjeanparker crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT abskharonromany crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT eisenbergdavid crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT kanaannicholasm crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT ganli crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT condellocarlo crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT swaneydaniellel crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis
AT kampmannmartin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis