Cargando…
CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis
A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer’s disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312804/ https://www.ncbi.nlm.nih.gov/pubmed/37398204 http://dx.doi.org/10.1101/2023.06.16.545386 |
_version_ | 1785066989777059840 |
---|---|
author | Samelson, Avi J. Ariqat, Nabeela McKetney, Justin Rohanitazangi, Gita Bravo, Celeste Parra Goodness, Darrin Tian, Ruilin Grosjean, Parker Abskharon, Romany Eisenberg, David Kanaan, Nicholas M. Gan, Li Condello, Carlo Swaney, Danielle L. Kampmann, Martin |
author_facet | Samelson, Avi J. Ariqat, Nabeela McKetney, Justin Rohanitazangi, Gita Bravo, Celeste Parra Goodness, Darrin Tian, Ruilin Grosjean, Parker Abskharon, Romany Eisenberg, David Kanaan, Nicholas M. Gan, Li Condello, Carlo Swaney, Danielle L. Kampmann, Martin |
author_sort | Samelson, Avi J. |
collection | PubMed |
description | A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer’s disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and subsequent dysfunction and death. The mechanisms underlying cell type-selective vulnerability are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways including UFMylation and GPI anchor synthesis, that control tau oligomer levels. We identify the E3 ubiquitin ligase CUL5 as a tau interactor and potent modifier of tau levels. In addition, disruption of mitochondrial function increases tau oligomer levels and promotes proteasomal misprocessing of tau. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies. |
format | Online Article Text |
id | pubmed-10312804 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-103128042023-07-01 CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis Samelson, Avi J. Ariqat, Nabeela McKetney, Justin Rohanitazangi, Gita Bravo, Celeste Parra Goodness, Darrin Tian, Ruilin Grosjean, Parker Abskharon, Romany Eisenberg, David Kanaan, Nicholas M. Gan, Li Condello, Carlo Swaney, Danielle L. Kampmann, Martin bioRxiv Article A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer’s disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and subsequent dysfunction and death. The mechanisms underlying cell type-selective vulnerability are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways including UFMylation and GPI anchor synthesis, that control tau oligomer levels. We identify the E3 ubiquitin ligase CUL5 as a tau interactor and potent modifier of tau levels. In addition, disruption of mitochondrial function increases tau oligomer levels and promotes proteasomal misprocessing of tau. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies. Cold Spring Harbor Laboratory 2023-06-26 /pmc/articles/PMC10312804/ /pubmed/37398204 http://dx.doi.org/10.1101/2023.06.16.545386 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Samelson, Avi J. Ariqat, Nabeela McKetney, Justin Rohanitazangi, Gita Bravo, Celeste Parra Goodness, Darrin Tian, Ruilin Grosjean, Parker Abskharon, Romany Eisenberg, David Kanaan, Nicholas M. Gan, Li Condello, Carlo Swaney, Danielle L. Kampmann, Martin CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis |
title | CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis |
title_full | CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis |
title_fullStr | CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis |
title_full_unstemmed | CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis |
title_short | CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis |
title_sort | crispr screens in ipsc-derived neurons reveal principles of tau proteostasis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312804/ https://www.ncbi.nlm.nih.gov/pubmed/37398204 http://dx.doi.org/10.1101/2023.06.16.545386 |
work_keys_str_mv | AT samelsonavij crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT ariqatnabeela crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT mcketneyjustin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT rohanitazangigita crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT bravocelesteparra crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT goodnessdarrin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT tianruilin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT grosjeanparker crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT abskharonromany crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT eisenbergdavid crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT kanaannicholasm crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT ganli crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT condellocarlo crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT swaneydaniellel crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis AT kampmannmartin crisprscreensinipscderivedneuronsrevealprinciplesoftauproteostasis |