Cargando…

The effect of spatial sampling on the resolution of the magnetostatic inverse problem

In magnetoencephalography, linear minimum norm inverse methods are commonly employed when a solution with minimal a priori assumptions is desirable. These methods typically produce spatially extended inverse solutions, even when the generating source is focal. Various reasons have been proposed for...

Descripción completa

Detalles Bibliográficos
Autores principales: Nurminen, Jussi, Zhdanov, Andrey, Yeo, Wan Jin, Iivanainen, Joonas, Stephen, Julia, Borna, Amir, McKay, Jim, Schwindt, Peter D.D., Taulu, Samu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312811/
https://www.ncbi.nlm.nih.gov/pubmed/37396603
_version_ 1785066991360409600
author Nurminen, Jussi
Zhdanov, Andrey
Yeo, Wan Jin
Iivanainen, Joonas
Stephen, Julia
Borna, Amir
McKay, Jim
Schwindt, Peter D.D.
Taulu, Samu
author_facet Nurminen, Jussi
Zhdanov, Andrey
Yeo, Wan Jin
Iivanainen, Joonas
Stephen, Julia
Borna, Amir
McKay, Jim
Schwindt, Peter D.D.
Taulu, Samu
author_sort Nurminen, Jussi
collection PubMed
description In magnetoencephalography, linear minimum norm inverse methods are commonly employed when a solution with minimal a priori assumptions is desirable. These methods typically produce spatially extended inverse solutions, even when the generating source is focal. Various reasons have been proposed for this effect, including intrisic properties of the minimum norm solution, effects of regularization, noise, and limitations of the sensor array. In this work, we express the lead field in terms of the magnetostatic multipole expansion and develop the minimum-norm inverse in the multipole domain. We demonstrate the close relationship between numerical regularization and explicit suppression of spatial frequencies of the magnetic field. We show that the spatial sampling capabilities of the sensor array and regularization together determine the resolution of the inverse solution. For the purposes of stabilizing the inverse estimate, we propose the multipole transformation of the lead field as an alternative or complementary means to purely numerical regularization.
format Online
Article
Text
id pubmed-10312811
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cornell University
record_format MEDLINE/PubMed
spelling pubmed-103128112023-07-01 The effect of spatial sampling on the resolution of the magnetostatic inverse problem Nurminen, Jussi Zhdanov, Andrey Yeo, Wan Jin Iivanainen, Joonas Stephen, Julia Borna, Amir McKay, Jim Schwindt, Peter D.D. Taulu, Samu ArXiv Article In magnetoencephalography, linear minimum norm inverse methods are commonly employed when a solution with minimal a priori assumptions is desirable. These methods typically produce spatially extended inverse solutions, even when the generating source is focal. Various reasons have been proposed for this effect, including intrisic properties of the minimum norm solution, effects of regularization, noise, and limitations of the sensor array. In this work, we express the lead field in terms of the magnetostatic multipole expansion and develop the minimum-norm inverse in the multipole domain. We demonstrate the close relationship between numerical regularization and explicit suppression of spatial frequencies of the magnetic field. We show that the spatial sampling capabilities of the sensor array and regularization together determine the resolution of the inverse solution. For the purposes of stabilizing the inverse estimate, we propose the multipole transformation of the lead field as an alternative or complementary means to purely numerical regularization. Cornell University 2023-05-31 /pmc/articles/PMC10312811/ /pubmed/37396603 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Nurminen, Jussi
Zhdanov, Andrey
Yeo, Wan Jin
Iivanainen, Joonas
Stephen, Julia
Borna, Amir
McKay, Jim
Schwindt, Peter D.D.
Taulu, Samu
The effect of spatial sampling on the resolution of the magnetostatic inverse problem
title The effect of spatial sampling on the resolution of the magnetostatic inverse problem
title_full The effect of spatial sampling on the resolution of the magnetostatic inverse problem
title_fullStr The effect of spatial sampling on the resolution of the magnetostatic inverse problem
title_full_unstemmed The effect of spatial sampling on the resolution of the magnetostatic inverse problem
title_short The effect of spatial sampling on the resolution of the magnetostatic inverse problem
title_sort effect of spatial sampling on the resolution of the magnetostatic inverse problem
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312811/
https://www.ncbi.nlm.nih.gov/pubmed/37396603
work_keys_str_mv AT nurminenjussi theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT zhdanovandrey theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT yeowanjin theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT iivanainenjoonas theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT stephenjulia theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT bornaamir theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT mckayjim theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT schwindtpeterdd theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT taulusamu theeffectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT nurminenjussi effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT zhdanovandrey effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT yeowanjin effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT iivanainenjoonas effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT stephenjulia effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT bornaamir effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT mckayjim effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT schwindtpeterdd effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem
AT taulusamu effectofspatialsamplingontheresolutionofthemagnetostaticinverseproblem