Cargando…
Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder by Pretraining Deep Learning Models with Single Channel Sleep Stage Data
As the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep learning methods applied to extracted features, there are fewer methods for developing...
Autores principales: | Ellis, Charles A., Sattiraju, Abhinav, Miller, Robyn L., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312836/ https://www.ncbi.nlm.nih.gov/pubmed/37398050 http://dx.doi.org/10.1101/2023.05.29.542700 |
Ejemplares similares
-
Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data
por: Ellis, Charles A., et al.
Publicado: (2023) -
An Explainable and Robust Deep Learning Approach for Automated Electroencephalography-based Schizophrenia Diagnosis
por: Sattiraju, Abhinav, et al.
Publicado: (2023) -
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
por: Ellis, Charles A., et al.
Publicado: (2023) -
A Systematic Approach for Explaining Time and Frequency Features Extracted by Convolutional Neural Networks From Raw Electroencephalography Data
por: Ellis, Charles A., et al.
Publicado: (2022) -
Wireless multichannel electroencephalography in the newborn
por: Ibrahim, Z.H., et al.
Publicado: (2016)