Cargando…
Fostering transparent medical image AI via an image-text foundation model grounded in medical literature
Building trustworthy and transparent image-based medical AI systems requires the ability to interrogate data and models at all stages of the development pipeline: from training models to post-deployment monitoring. Ideally, the data and associated AI systems could be described using terms already fa...
Autores principales: | Kim, Chanwoo, Gadgil, Soham U., DeGrave, Alex J., Cai, Zhuo Ran, Daneshjou, Roxana, Lee, Su-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312868/ https://www.ncbi.nlm.nih.gov/pubmed/37398017 http://dx.doi.org/10.1101/2023.06.07.23291119 |
Ejemplares similares
-
Dissection of medical AI reasoning processes via physician and generative-AI collaboration
por: DeGrave, Alex J., et al.
Publicado: (2023) -
AI for radiographic COVID-19 detection selects shortcuts over signal
por: DeGrave, Alex J., et al.
Publicado: (2020) -
Image–text coherence and its implications for multimodal AI
por: Alikhani, Malihe, et al.
Publicado: (2023) -
Effect of a flipped classroom course to foster medical students’ AI literacy with a focus on medical imaging: a single group pre-and post-test study
por: Laupichler, Matthias C., et al.
Publicado: (2022) -
Developing medical imaging AI for emerging infectious diseases
por: Huang, Shih-Cheng, et al.
Publicado: (2022)