Cargando…
From Answers to Insights: Unveiling the Strengths and Limitations of ChatGPT and Biomedical Knowledge Graphs
Large Language Models (LLMs) have demonstrated exceptional performance in various natural language processing tasks, utilizing their language generation capabilities and knowledge acquisition potential from unstructured text. However, when applied to the biomedical domain, LLMs encounter limitations...
Autores principales: | Hou, Yu, Yeung, Jeremy, Xu, Hua, Su, Chang, Wang, Fei, Zhang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312889/ https://www.ncbi.nlm.nih.gov/pubmed/37398259 http://dx.doi.org/10.1101/2023.06.09.23291208 |
Ejemplares similares
-
From Answers to Insights: Unveiling the Strengths and Limitations of ChatGPT and Biomedical Knowledge Graphs
por: Hou, Yu, et al.
Publicado: (2023) -
To ChatGPT or not to ChatGPT: the use of artificial intelligence in writing scientific papers
por: Marescotti, Manuela
Publicado: (2023) -
Will ChatGPT pass the Polish specialty exam in radiology and diagnostic imaging? Insights into strengths and limitations
por: Kufel, Jakub, et al.
Publicado: (2023) -
ChatGPT in Answering Queries Related to Lifestyle-Related Diseases and Disorders
por: Mondal, Himel, et al.
Publicado: (2023) -
ChatGPT and other artificial intelligence chatbots and biomedical writing
por: Gurha, Priyatansh, et al.
Publicado: (2023)