Cargando…
Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extende...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312934/ https://www.ncbi.nlm.nih.gov/pubmed/37398145 http://dx.doi.org/10.21203/rs.3.rs-2987323/v1 |
_version_ | 1785067013340659712 |
---|---|
author | Hariharan, Vignesh Narayan Caiazzi, Jillian Miller, Rachael Ferguson, Chantal Sapp, Ellen Fakih, Hassan Tang, Qi Yamada, Nozomi Furgal, Raymond Paquette, Joseph Bramato, Brianna McHugh, Nicholas Summers, Ashley Lochmann, Clemens Godinho, Bruno Hildebrand, Samuel Echeverria, Dimas Hassler, Matthew Alterman, Julia DiFiglia, Marian Aronin, Neil Khvorova, Anastasia Yamada, Ken |
author_facet | Hariharan, Vignesh Narayan Caiazzi, Jillian Miller, Rachael Ferguson, Chantal Sapp, Ellen Fakih, Hassan Tang, Qi Yamada, Nozomi Furgal, Raymond Paquette, Joseph Bramato, Brianna McHugh, Nicholas Summers, Ashley Lochmann, Clemens Godinho, Bruno Hildebrand, Samuel Echeverria, Dimas Hassler, Matthew Alterman, Julia DiFiglia, Marian Aronin, Neil Khvorova, Anastasia Yamada, Ken |
author_sort | Hariharan, Vignesh Narayan |
collection | PubMed |
description | Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3’- and 5’-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3’-exonuclease by ~ 32-fold over PS backbone and > 1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~ 6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions. |
format | Online Article Text |
id | pubmed-10312934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-103129342023-07-01 Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo Hariharan, Vignesh Narayan Caiazzi, Jillian Miller, Rachael Ferguson, Chantal Sapp, Ellen Fakih, Hassan Tang, Qi Yamada, Nozomi Furgal, Raymond Paquette, Joseph Bramato, Brianna McHugh, Nicholas Summers, Ashley Lochmann, Clemens Godinho, Bruno Hildebrand, Samuel Echeverria, Dimas Hassler, Matthew Alterman, Julia DiFiglia, Marian Aronin, Neil Khvorova, Anastasia Yamada, Ken Res Sq Article Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3’- and 5’-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3’-exonuclease by ~ 32-fold over PS backbone and > 1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~ 6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions. American Journal Experts 2023-06-01 /pmc/articles/PMC10312934/ /pubmed/37398145 http://dx.doi.org/10.21203/rs.3.rs-2987323/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Hariharan, Vignesh Narayan Caiazzi, Jillian Miller, Rachael Ferguson, Chantal Sapp, Ellen Fakih, Hassan Tang, Qi Yamada, Nozomi Furgal, Raymond Paquette, Joseph Bramato, Brianna McHugh, Nicholas Summers, Ashley Lochmann, Clemens Godinho, Bruno Hildebrand, Samuel Echeverria, Dimas Hassler, Matthew Alterman, Julia DiFiglia, Marian Aronin, Neil Khvorova, Anastasia Yamada, Ken Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo |
title | Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo |
title_full | Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo |
title_fullStr | Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo |
title_full_unstemmed | Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo |
title_short | Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo |
title_sort | extended nucleic acid (exna): a novel, biologically compatible backbone that significantly enhances oligonucleotide efficacy in vivo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312934/ https://www.ncbi.nlm.nih.gov/pubmed/37398145 http://dx.doi.org/10.21203/rs.3.rs-2987323/v1 |
work_keys_str_mv | AT hariharanvigneshnarayan extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT caiazzijillian extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT millerrachael extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT fergusonchantal extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT sappellen extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT fakihhassan extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT tangqi extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT yamadanozomi extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT furgalraymond extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT paquettejoseph extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT bramatobrianna extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT mchughnicholas extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT summersashley extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT lochmannclemens extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT godinhobruno extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT hildebrandsamuel extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT echeverriadimas extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT hasslermatthew extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT altermanjulia extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT difigliamarian extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT aroninneil extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT khvorovaanastasia extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo AT yamadaken extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo |