Cargando…

Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extende...

Descripción completa

Detalles Bibliográficos
Autores principales: Hariharan, Vignesh Narayan, Caiazzi, Jillian, Miller, Rachael, Ferguson, Chantal, Sapp, Ellen, Fakih, Hassan, Tang, Qi, Yamada, Nozomi, Furgal, Raymond, Paquette, Joseph, Bramato, Brianna, McHugh, Nicholas, Summers, Ashley, Lochmann, Clemens, Godinho, Bruno, Hildebrand, Samuel, Echeverria, Dimas, Hassler, Matthew, Alterman, Julia, DiFiglia, Marian, Aronin, Neil, Khvorova, Anastasia, Yamada, Ken
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312934/
https://www.ncbi.nlm.nih.gov/pubmed/37398145
http://dx.doi.org/10.21203/rs.3.rs-2987323/v1
_version_ 1785067013340659712
author Hariharan, Vignesh Narayan
Caiazzi, Jillian
Miller, Rachael
Ferguson, Chantal
Sapp, Ellen
Fakih, Hassan
Tang, Qi
Yamada, Nozomi
Furgal, Raymond
Paquette, Joseph
Bramato, Brianna
McHugh, Nicholas
Summers, Ashley
Lochmann, Clemens
Godinho, Bruno
Hildebrand, Samuel
Echeverria, Dimas
Hassler, Matthew
Alterman, Julia
DiFiglia, Marian
Aronin, Neil
Khvorova, Anastasia
Yamada, Ken
author_facet Hariharan, Vignesh Narayan
Caiazzi, Jillian
Miller, Rachael
Ferguson, Chantal
Sapp, Ellen
Fakih, Hassan
Tang, Qi
Yamada, Nozomi
Furgal, Raymond
Paquette, Joseph
Bramato, Brianna
McHugh, Nicholas
Summers, Ashley
Lochmann, Clemens
Godinho, Bruno
Hildebrand, Samuel
Echeverria, Dimas
Hassler, Matthew
Alterman, Julia
DiFiglia, Marian
Aronin, Neil
Khvorova, Anastasia
Yamada, Ken
author_sort Hariharan, Vignesh Narayan
collection PubMed
description Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3’- and 5’-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3’-exonuclease by ~ 32-fold over PS backbone and > 1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~ 6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions.
format Online
Article
Text
id pubmed-10312934
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-103129342023-07-01 Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo Hariharan, Vignesh Narayan Caiazzi, Jillian Miller, Rachael Ferguson, Chantal Sapp, Ellen Fakih, Hassan Tang, Qi Yamada, Nozomi Furgal, Raymond Paquette, Joseph Bramato, Brianna McHugh, Nicholas Summers, Ashley Lochmann, Clemens Godinho, Bruno Hildebrand, Samuel Echeverria, Dimas Hassler, Matthew Alterman, Julia DiFiglia, Marian Aronin, Neil Khvorova, Anastasia Yamada, Ken Res Sq Article Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3’- and 5’-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3’-exonuclease by ~ 32-fold over PS backbone and > 1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~ 6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions. American Journal Experts 2023-06-01 /pmc/articles/PMC10312934/ /pubmed/37398145 http://dx.doi.org/10.21203/rs.3.rs-2987323/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Hariharan, Vignesh Narayan
Caiazzi, Jillian
Miller, Rachael
Ferguson, Chantal
Sapp, Ellen
Fakih, Hassan
Tang, Qi
Yamada, Nozomi
Furgal, Raymond
Paquette, Joseph
Bramato, Brianna
McHugh, Nicholas
Summers, Ashley
Lochmann, Clemens
Godinho, Bruno
Hildebrand, Samuel
Echeverria, Dimas
Hassler, Matthew
Alterman, Julia
DiFiglia, Marian
Aronin, Neil
Khvorova, Anastasia
Yamada, Ken
Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
title Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
title_full Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
title_fullStr Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
title_full_unstemmed Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
title_short Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
title_sort extended nucleic acid (exna): a novel, biologically compatible backbone that significantly enhances oligonucleotide efficacy in vivo
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312934/
https://www.ncbi.nlm.nih.gov/pubmed/37398145
http://dx.doi.org/10.21203/rs.3.rs-2987323/v1
work_keys_str_mv AT hariharanvigneshnarayan extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT caiazzijillian extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT millerrachael extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT fergusonchantal extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT sappellen extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT fakihhassan extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT tangqi extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT yamadanozomi extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT furgalraymond extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT paquettejoseph extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT bramatobrianna extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT mchughnicholas extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT summersashley extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT lochmannclemens extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT godinhobruno extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT hildebrandsamuel extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT echeverriadimas extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT hasslermatthew extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT altermanjulia extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT difigliamarian extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT aroninneil extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT khvorovaanastasia extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo
AT yamadaken extendednucleicacidexnaanovelbiologicallycompatiblebackbonethatsignificantlyenhancesoligonucleotideefficacyinvivo