Cargando…
Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo
Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extende...
Autores principales: | Hariharan, Vignesh Narayan, Caiazzi, Jillian, Miller, Rachael, Ferguson, Chantal, Sapp, Ellen, Fakih, Hassan, Tang, Qi, Yamada, Nozomi, Furgal, Raymond, Paquette, Joseph, Bramato, Brianna, McHugh, Nicholas, Summers, Ashley, Lochmann, Clemens, Godinho, Bruno, Hildebrand, Samuel, Echeverria, Dimas, Hassler, Matthew, Alterman, Julia, DiFiglia, Marian, Aronin, Neil, Khvorova, Anastasia, Yamada, Ken |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312934/ https://www.ncbi.nlm.nih.gov/pubmed/37398145 http://dx.doi.org/10.21203/rs.3.rs-2987323/v1 |
Ejemplares similares
-
Extended Nucleic Acid (exNA): A Novel, Biologically Compatible Backbone that Significantly Enhances Oligonucleotide Efficacy in vivo.
por: Yamada, Ken, et al.
Publicado: (2023) -
Structurally constrained phosphonate internucleotide linkage impacts oligonucleotide-enzyme interaction, and modulates siRNA activity and allele specificity
por: Yamada, Ken, et al.
Publicado: (2021) -
Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington’s disease models
por: Conroy, Faith, et al.
Publicado: (2022) -
Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington’s disease
por: O’Reilly, Daniel, et al.
Publicado: (2023) -
PK-modifying anchors significantly alter clearance kinetics, tissue distribution, and efficacy of therapeutics siRNAs
por: Godinho, Bruno M.D.C., et al.
Publicado: (2022)