Cargando…
Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data
Real-time monitoring using in-situ sensors is becoming a common approach for measuring water-quality within watersheds. High-frequency measurements produce big datasets that present opportunities to conduct new analyses for improved understanding of water-quality dynamics and more effective manageme...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313027/ https://www.ncbi.nlm.nih.gov/pubmed/37390064 http://dx.doi.org/10.1371/journal.pone.0287640 |
_version_ | 1785067034708541440 |
---|---|
author | Kermorvant, Claire Liquet, Benoit Litt, Guy Mengersen, Kerrie Peterson, Erin E. Hyndman, Rob J. Jones, Jeremy B. Leigh, Catherine |
author_facet | Kermorvant, Claire Liquet, Benoit Litt, Guy Mengersen, Kerrie Peterson, Erin E. Hyndman, Rob J. Jones, Jeremy B. Leigh, Catherine |
author_sort | Kermorvant, Claire |
collection | PubMed |
description | Real-time monitoring using in-situ sensors is becoming a common approach for measuring water-quality within watersheds. High-frequency measurements produce big datasets that present opportunities to conduct new analyses for improved understanding of water-quality dynamics and more effective management of rivers and streams. Of primary importance is enhancing knowledge of the relationships between nitrate, one of the most reactive forms of inorganic nitrogen in the aquatic environment, and other water-quality variables. We analysed high-frequency water-quality data from in-situ sensors deployed in three sites from different watersheds and climate zones within the National Ecological Observatory Network, USA. We used generalised additive mixed models to explain the nonlinear relationships at each site between nitrate concentration and conductivity, turbidity, dissolved oxygen, water temperature, and elevation. Temporal auto-correlation was modelled with an auto-regressive–moving-average (ARIMA) model and we examined the relative importance of the explanatory variables. Total deviance explained by the models was high for all sites (99%). Although variable importance and the smooth regression parameters differed among sites, the models explaining the most variation in nitrate contained the same explanatory variables. This study demonstrates that building a model for nitrate using the same set of explanatory water-quality variables is achievable, even for sites with vastly different environmental and climatic characteristics. Applying such models will assist managers to select cost-effective water-quality variables to monitor when the goals are to gain a spatial and temporal in-depth understanding of nitrate dynamics and adapt management plans accordingly. |
format | Online Article Text |
id | pubmed-10313027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-103130272023-07-01 Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data Kermorvant, Claire Liquet, Benoit Litt, Guy Mengersen, Kerrie Peterson, Erin E. Hyndman, Rob J. Jones, Jeremy B. Leigh, Catherine PLoS One Research Article Real-time monitoring using in-situ sensors is becoming a common approach for measuring water-quality within watersheds. High-frequency measurements produce big datasets that present opportunities to conduct new analyses for improved understanding of water-quality dynamics and more effective management of rivers and streams. Of primary importance is enhancing knowledge of the relationships between nitrate, one of the most reactive forms of inorganic nitrogen in the aquatic environment, and other water-quality variables. We analysed high-frequency water-quality data from in-situ sensors deployed in three sites from different watersheds and climate zones within the National Ecological Observatory Network, USA. We used generalised additive mixed models to explain the nonlinear relationships at each site between nitrate concentration and conductivity, turbidity, dissolved oxygen, water temperature, and elevation. Temporal auto-correlation was modelled with an auto-regressive–moving-average (ARIMA) model and we examined the relative importance of the explanatory variables. Total deviance explained by the models was high for all sites (99%). Although variable importance and the smooth regression parameters differed among sites, the models explaining the most variation in nitrate contained the same explanatory variables. This study demonstrates that building a model for nitrate using the same set of explanatory water-quality variables is achievable, even for sites with vastly different environmental and climatic characteristics. Applying such models will assist managers to select cost-effective water-quality variables to monitor when the goals are to gain a spatial and temporal in-depth understanding of nitrate dynamics and adapt management plans accordingly. Public Library of Science 2023-06-30 /pmc/articles/PMC10313027/ /pubmed/37390064 http://dx.doi.org/10.1371/journal.pone.0287640 Text en © 2023 Kermorvant et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kermorvant, Claire Liquet, Benoit Litt, Guy Mengersen, Kerrie Peterson, Erin E. Hyndman, Rob J. Jones, Jeremy B. Leigh, Catherine Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data |
title | Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data |
title_full | Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data |
title_fullStr | Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data |
title_full_unstemmed | Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data |
title_short | Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data |
title_sort | understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313027/ https://www.ncbi.nlm.nih.gov/pubmed/37390064 http://dx.doi.org/10.1371/journal.pone.0287640 |
work_keys_str_mv | AT kermorvantclaire understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata AT liquetbenoit understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata AT littguy understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata AT mengersenkerrie understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata AT petersonerine understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata AT hyndmanrobj understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata AT jonesjeremyb understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata AT leighcatherine understandinglinksbetweenwaterqualityvariablesandnitrateconcentrationinfreshwaterstreamsusinghighfrequencysensordata |