Cargando…
iPiDA-SWGCN: Identification of piRNA-disease associations based on Supplementarily Weighted Graph Convolutional Network
Accurately identifying potential piRNA-disease associations is of great importance in uncovering the pathogenesis of diseases. Recently, several machine-learning-based methods have been proposed for piRNA-disease association detection. However, they are suffering from the high sparsity of piRNA-dise...
Autores principales: | Hou, Jialu, Wei, Hang, Liu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313042/ https://www.ncbi.nlm.nih.gov/pubmed/37339125 http://dx.doi.org/10.1371/journal.pcbi.1011242 |
Ejemplares similares
-
iPiDA-GCN: Identification of piRNA-disease associations based on Graph Convolutional Network
por: Hou, Jialu, et al.
Publicado: (2022) -
iPiDA-LTR: Identifying piwi-interacting RNA-disease associations based on Learning to Rank
por: Zhang, Wenxiang, et al.
Publicado: (2022) -
ETGPDA: identification of piRNA-disease associations based on embedding transformation graph convolutional network
por: Meng, Xianghan, et al.
Publicado: (2023) -
Identification of piRNAs and piRNA clusters in the testes of the Mongolian horse
por: Li, Bei, et al.
Publicado: (2019) -
To be or not to be a piRNA: genomic origin and processing of piRNAs
por: Le Thomas, Adrien, et al.
Publicado: (2014)