Cargando…
Vision Transformer with hierarchical structure and windows shifting for person re-identification
Extracting rich feature representations is a key challenge in person re-identification (Re-ID) tasks. However, traditional Convolutional Neural Networks (CNN) based methods could ignore a part of information when processing local regions of person images, which leads to incomplete feature extraction...
Autores principales: | Zhang, Yinghua, Hou, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313053/ https://www.ncbi.nlm.nih.gov/pubmed/37390091 http://dx.doi.org/10.1371/journal.pone.0287979 |
Ejemplares similares
-
Threshold-Based Hierarchical Clustering for Person Re-Identification
por: Hu, Minhui, et al.
Publicado: (2021) -
Shifted-windows transformers for the detection of cerebral aneurysms in microsurgery
por: Zhou, Jinfan, et al.
Publicado: (2023) -
Hint-Based Image Colorization Based on Hierarchical Vision Transformer
por: Lee, Subin, et al.
Publicado: (2022) -
Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification
por: Kwon, Jaerock, et al.
Publicado: (2021) -
Heterogeneous feature-aware Transformer-CNN coupling network for person re-identification
por: Li, Yanchao, et al.
Publicado: (2022)