Cargando…
Identification and analysis of cellular senescence-associated signatures in diabetic kidney disease by integrated bioinformatics analysis and machine learning
BACKGROUND: Diabetic kidney disease (DKD) is a common complication of diabetes that is clinically characterized by progressive albuminuria due to glomerular destruction. The etiology of DKD is multifactorial, and numerous studies have demonstrated that cellular senescence plays a significant role in...
Autores principales: | Luo, Yuanyuan, Zhang, Lingxiao, Zhao, Tongfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313062/ https://www.ncbi.nlm.nih.gov/pubmed/37396184 http://dx.doi.org/10.3389/fendo.2023.1193228 |
Ejemplares similares
-
Identification of glycolysis genes signature for predicting prognosis in malignant pleural mesothelioma by bioinformatics and machine learning
por: Xiao, Yingqi, et al.
Publicado: (2022) -
Identification of biomarkers for the diagnosis of chronic kidney disease (CKD) with non-alcoholic fatty liver disease (NAFLD) by bioinformatics analysis and machine learning
por: Cao, Yang, et al.
Publicado: (2023) -
Identification of Key Candidate Genes and Chemical Perturbagens in Diabetic Kidney Disease Using Integrated Bioinformatics Analysis
por: Gao, Zhuo, et al.
Publicado: (2021) -
Identification of key immune genes of osteoporosis based on bioinformatics and machine learning
por: Hao, Song, et al.
Publicado: (2023) -
Identification and analysis of novel endometriosis biomarkers via integrative bioinformatics
por: Bae, Sung-Jin, et al.
Publicado: (2022)